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CHAPTER I

INTRODUCTION

With the advent of high speed computers, engineers have a tool to solve the 

mathematical equations which represent the thermal and mechanical behavior of complex 

engine structures. In particular, the finite element method allows computer simulation of the 

mechanical and thermal behavior of various engine components in the design stage.

Since the finite element method was first applied to engine analysis in 1972[1], 

numerous results have been published[2-10]. It has been shown that the finite element 

method is capable o f modeling complex structures, such as engine cylinder blocks, 

accurately. Finite element modelling allows a particular design to be evaluated and 

improved without building a prototype.

As market needs change, the engine industry is faced with the task of developing 

new engines to meet such needs in a timely fashion, and at the lowest possible cost. 

Therefore, it is increasingly necessary to reduce analysis costs in the process of designing 

an engine and to integrate various analysis procedures. There are several categories of 

analysis, including stress, dynamic and thermal analyses. In past research, different finite 

element models of an engine have been used for each of these analyses. An engine has been 

modeled, in general, using either 8 -node or 2 0 -node solid elements for the thermal and 

stress analyses, while it was modeled using 4-node plate and shell elements for dynamic

1
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analysis. This approach was inefficient because different finite element models of the same 

structure had to be developed. In order to reduce the time and the cost for analysis and 

simulation of a particular design, it is essential to reduce the duplication of effort required to 

develop different finite element models for different analyses. One solution is to integrate 

various activities such as design layout, geometric modelling, and design analysis based on 

a common geometric description. Solid modeling is a popular method to define geometry. 

Commercially available software packages allow the solid model to be manipulated to form 

detailed design and finite element meshes.

In generating finite element meshes, it is necessary to generate three-dimensional 

solid elements without changing the basic geometric representation used by the solid 

modeler. 8 -node hexahedral(HEXA8 ) elements or 4-node tetrahedral(TETRA4) elements 

are the simplest elements to fulfill this requirements. This approach, using simple solid 

elements to develop a three-dimensional solid finite element model of a rather complex 

geometrical structure, is rapidly replacing conventional model development methods which 

use higher order finite elements such as 20-node hexahedral(HEXA20) elements. A 

significant time saving may be realized by using the simplest element to generate a finite 

element model. The HEXA8  element is one of the best candidates to be used in this regard.

Therefore, a finite element model of a complex structure such as an engine cylinder 

block is developed using simple, HEXA8  finite elements. These elements are simplified in 

order to achieve shorter computing time necessary to form the stiffness matrices as well as 

to increase accuracy for stress, and vibration analyses by examining the theories of 

mechanics and heat conduction for structures.

Even though it is more economical to use HEXA8  elements in developing a model 

for a complex geometry such as a cylinder block, they should not be used unless they can 

provide a sufficiently accurate solution. HEXA8  elements perform poorly in bending
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dominated problems for thin shell-like structures in both stress and vibration analyses. To 

overcome this poor performance of HEXA8 elements, reduced integration methods have 

been applied to form the element stiffness matrices.

There have been some studies[21,22] to evaluate the stiffness matrix of HEXA8 

elements. The method used in these studies is to "under-estimate" stiffness by applying a 

reduced integration method, i.e., one point integration is applied for the HEXA8  elements. 

However, this is not totally satisfactory, since this can activate spurious, non-physical 

modes. These are called hourglass modes in the literature. To eliminate these non-physical 

modes, an hourglass control method must be applied. By combining reduced integration 

with hourglass control, the HEXA8  elements can be used to accurately model a complex 

structure.

In chapter 2, the newly developed directional reduced integration (DRI) technique is 

applied to formulate element stiffness matrices, and to improve the accuracy of the finite 

element approximation for dynamic problems. To do this, the directional reduced 

integration technique with hourglass control studied in [2 0 ] is extended to dynamic 

problems. Results using this new formulation are compared with results obtained using 

traditional beam and plate elements.

In chapter 3, a finite element model of a diesel engine cylinder block is developed. 

It is analyzed using NIKE3D program[24] and its related codes[23,25,26], developed by 

John Hallquist at the Lawrence Livermore National Laboratory after substantial 

modification of these programs for the present study. The changes to NIKE3D involved the 

modification of the HEXA8  solid element by using the directional reduced integration 

method with hourglass control. It will be shown that these modifications provide 

reasonably accurate solutions to the eigenvalue analysis of a diesel engine cylinder block.
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The computed results are compared with experimental modal analysis results. Dynamic 

characteristics of the cylinder block are discussed based on the computational results.

Although directional reduced integration with hourglass control can provide fairly 

accurate solutions, there is still some unacceptable error. This error may be due to either an 

inappropriate finite element mesh or to the numerical integration scheme used for time 

integration to solve the dynamic problem. To minimize such errors, the adaptive finite 

element method is introduced. It can be used to improve the approximation in the space 

and/or time frames in the present study. Therefore, the selection of an appropriate finite 

element idealization and choice of an effective time integration scheme are closely related.

In chapter 4, adaptive finite element methods are presented to reduce errors due to 

poor discretization. Based on the error, which is presented in chapter 2, we introduce 

adaptive methods and discuss how these are applicable to analyses of an engine structure.

When a time integration scheme is applied to solving dynamic problems, error is 

introduced during the integration process of the problem. It is known that the truncation 

error is a function of the time step used. Therefore, it is desirable to select a time step size at 

each time step which will minimize or reduce such error. Thus, a variable time stepping 

algorithm is considered in chapter 5.

There have been many time integration schemes developed to solve dynamic 

problems[59,60,66,76]. These methods have been verified and have been successfully 

applied in many different types of dynamic problems. Since NIKE3D employes the 

implicit Newmark-P method, our investigation is focused on implicit methods.

Most of numerical studies show a steady and rapidly increasing growth of error as 

the time step size increases. Stability and accuracy requirements suggest that it is important 

to control the error as well as to control the time step size for stability. Several variable-step
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integration procedures have been proposed for both explicit methods[57, 58, 48, 59], and 

implicit methods by [60, 65, 63]. However, it is recognized in the literature that no 

satisfactory general approach is available. Furthermore, it is a difficult task to assess what 

the error will be for multi-degree-of-freedom systems for which the solution consists of a 

priori unknown combinations of modal response. It has become evident that there is a great 

need for an algorithm that can calculate the optimum time step in an automatic fashion 

during the solution process. Such an algorithm should reduce a significant amount of error 

while maintaining computational efficiency.

The method described in this work has many similarities to time step selection in the 

literature. It is based upon a local truncation error control technique using truncation error 

measure. However, it is modified to improve the accuracy and to reduce the possibility of 

instability that might occur during the time step size adjustment. It will provide a relatively 

fast and reliable solution by improving upon the effectiveness of traditional step size change 

techniques.

In chapter 6 , an experimental modal analysis of a diesel engine cylinder block is 

performed. This analysis is conducted in order to obtain the dynamic characteristics of the 

cylinder block structure of the Daewoo-M.A.N. D0846HM diesel engine in the W. Lay 

Automotive Laboratory. Results obtained from modal analysis are used to verify the 

reliability and accuracy of the finites element analysis on the cylinder block which is 

discussed in chapter 3. The objective of experimental modal analysis, or modal testing, is 

to determine the modal parameters, which consist of; the modal frequencies, the modal 

damping, and the mode shapes. This chapter is concerned with these major parts of the 

experimental modal analysis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

CHAPTER II

V IBRATIO N OF ENG INE STRUCTURE

2,l_E,quati.Qn o f. S.vstem

Suppose that the following vibration problem is considered for a given elastic

structure subject to a body force f and a surface traction t on Pp, which is a part of the

boundary T of the structure £2 :

p C ^ t  - divZ(u)=pf in £2 , (2 .1 )

n-S(u) = t on rT,

u = g on Td,

where C is a damping coefficient per unit volume, p is the mass density, 2(u) is the stress 

tensor due to the displacement u, n is the unit vector normal to the boundary, Pp is the 

traction boundary, g is the constrained displacement specified on the boundary Td = T - 

T t ,  and div is the divergence operator defined in the domain £2. For simplicity, let us 

assume that C=0 in the following development. If linear elasticity is assumed, the stress 

tensor E(u) is related to the linearized strain tensor e(u):

Z(u)= D-e(u) - Zo, (2.2)

6
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where D is the 4th. order tensor of elastic properties, is the initial stress and (■•) 

represents a double inner product, i.e., D-e = DjjkiEki. The linearized strain e(v) due to an 

arbitrary displacement v by :

1 T
e(v) = 7  { (grad v)1 + grad v }, (2.3)

where grad is the gradient operator and (.)T is the transpose of (.).

As a first step, let a weak form be obtained at an arbitrary time t e (0,x) by 

multiplying an arbitrary test function such that v = 0 on To and by integrating over the 

domain Q :

32u
( v -p v-divZ(u))dQ = J v p f  dQ . (2.4)

Q 
Q

Applying the divegence theorem to the second term yields:

• 32u
(v p  (grad v)E(u))dQ = J v-pf dQ + J v  t dQ , (2.5)

Q Tt
Cl

after applying the boundary condition on Fr.

Defining:

(u,v)= Jv-pu dQ , (2.6)
Q

a(u,v) = Je(v)-D-e(u) dQ, (2.7)
Q

L(v)= Je(v)-Z0 dQ + J v  p f d Q +  Jv t dT, (2.8)
Q Q Tt
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and denoting ii = ^  and ii = , the weak form is given by

u e  V: (u ,v) + a(u,v) = L(v), Vve V0, (2.9)

at t e  (0,T), where V0  is the set of admissible displacements for the homogeneous

boundary condition g=0 on I 'd , while V is the admissible set for a general g. The initial

condition is assume on the displacement and velocity as follows:

u = u0 and ii = ii0  at t = 0 . (2 .1 0 )

In summary, the equations of vibration are given by:

u e  V : ( ii,v ) + a (u,v) = L(v) ,Vve Vo at t € (0,x), (2.1 l.a)

u = u0 and ii = u0 at t = 0 ,

or

a*(u,v) = L(v), (2.1 l.b)

where

a*(u,v)=( u,v ) + a (u,v).

Suppose that Vh is a finite element approximation of V and suppose that V0h is a 

finite element approximation of V0. Let v be an arbitrary element of V, and let vh be its 

global finite element approximation. Vh then consists of all such approximations. More 

precisely, in an arbitrary finite element Qe> vh is spanned by its nodal values {Va } and the 

shape functions {Na }, a= l,2 ...,N e:

Ne
vh(x,t)= X  Va(t)Na (^), (2.12)

a = l
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where Ne is the total number of nodes in an element Qe, and £,, i.e. (£1, £2 , ^3), is the 

coordinates in the master element defined by, for example, a cube (-l,l)x (-l,l)x (-l,l)  

for a three dimensional structure. If 8 -node trilinear elements, which are called HEXA8 

element in this work, are used, the shape functions Na(£) are given by:

N a(^)= |(l+^la^l)(l+^2a^2)(lH 3a^3)»

where (£ia>^2 a>^3a) are the coordinates of the eight corner nodes in the master element, 

Qm- If isoparametric relationship is assumed for geometry,

N e
x = X  x <xN a(£ ), (2-13)

a = l

where x« are the coordinates of the eight comer nodes in the physical coordinate system.

A semi-analytic finite element approximation of the vibration problem (2.1) is 

formally written as:

«h e  Vh : ( iih,Vh ) + a ( «h, Vh) = L(vh), V Vh e V0h at t e  (0,t),

«h = u0h and wj, = ii0h at t=0, (2.14)

where u0h and ii0h are the finite element interpolations of the initial displacement u0 and the 

initial velocity u0, respectively.

Using an integration scheme for the finite element approximation, which will be 

further discussed in the next section, Eq.(2.14) can be written in the following form :

[ M] ( uh} + [ K ] { u h } = {P}.  (2.15)

Eq. (2.15) may be solved by the unconditional stable, one-step, Newmark-p time

integration scheme
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uh n+ 1  B)u„n
h PAt 2 |3At P (2 ’

uh n+l=  uh n + At (1  - y )% n + At y  uh n+1,

x n+l = xn +Auh ,

(2.16.a)

(2.16.b)

(2.16.C)

where At is the time step size and P and y are the free parameters of integration.

For the transient dynamic problem, Eq. (2.15) may be written as a time difference 

equation as follows:

[ M ] { uh n+l} + [ K ] { Auhn+1} = {P(xn ) ) n + 1  - (F(xn)}, (2.17)

where

[M] : lumped mass matrix,

[K] : stiffness matrix,

(P(xn)} : External Load,

(F(xn)} : Internal Load,

uh n + 1 : displacement = x n+* - x

'■% n + 1
: acceleration at time n+1 .

Eq. (2.17) leads to:

[ K* ] { Auhn+1} = (P(xn ) } n + 1  - (F*(xn)}, (2.18)

where

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

11

[ K * ]  = [ K ]  + [ M ] / p A t 2, and

{ F * )  = { F ) - [ M ]  ( - ^ - + 7 (T-P)  “ h n )•
pAt p z

1 l2 Finite Element Formulation Based on Directional Reduced Integration

with Hourglass Control

In this section we shall discuss the finite element approximation of the term 

a(uh,Vh) which yields the stiffness matrix [K] using the directional reduced integration 

method with hourglass control.

As mentioned previously, the HEXA8  finite element has been reluctantly used by 

analysts because of poor accuracy for bending dominated problems due to the shear locking 

phenomenon. As an alternative, TETRA10 or HEXA20 have been used to achieve better 

accuracy. However, the use of these elements increase nodal degrees of freedom as well as 

bandwidth of [K]. Thus, in this work, we shall use the HEXA8  finite element in order to 

reduce computation time required. The accuracy of the approximation is also significantly 

improved so that this element is almost comparable to the higher order elements.

It is noted that there are several integration schemes to construct the stiffness 

matrix, such as full integration, reduced integration and selective reduced integration. The 

full integration scheme has been widely used because the "stability" is always guaranteed 

for well-posed problems in the sense that it leads to no nonphysical hourglass modes. 

However, full integration scheme can cause shear locking phenomenon in bending

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

12

dominated problems. To resolve this difficulty, the reduced integration scheme is 

introduced, which alsoprovides more efficient formulatation of the stiffness matrix since 

less number of integration points are required. However, the reduced integration scheme 

implies instability in the sense that there is a possibility of producing physically 

unreasonable spurious modes with zero strain energy.

Thus, the element stiffness matrix Ke, obtained by using reduced integration, must 

be modified by adding a "correcting" term to eliminate these nonsensical zero energy 

modes:

Keact = KeRI + Kecorr, (2.19)

where Keact is the modified element stiffness matrix, Kecorr is the correction term to KeRI 

obtained by using the reduced integration scheme. It should be noted that Keact need not be 

the same to the one obtained by using the full integration scheme.

To solve the difficulty mentioned above, Koh and Kikuchi[20] suggested that the 

correction term Kecorr be added properly to control the hourglassing based on not only 

mathematical but physical considerations. The correction term should maintain all structural 

behaviors such as bending and torsion as well as axial deformation. According to their 

development, the stiffness matrix can be decomposed into several terms relating to the 

directional behavior of the hexahedral elem ent. Consequently, the actual stiffness matrix 

Ke act applied in computation can be written in the form:

Keact = KeRI + Ke^i +Ke =̂2 +Ke 3̂ + Ke^ 2  +Kg^2^3 +Ke 3̂̂ 1 +K<ĵ 1̂ 2̂ 3,

(2.20)

where superscripts £ i, %2, and £ 3  stand for the normalized coordinates in the master 

element. Furthermore, every term in Eq.(2.20) can be approximately but explicitly obtained
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■without using a quadrature rule to integrate in the parametric space £7, £2 , and £3 , using the 

information evaluated at the centroid of each element that corresponds to the reduced 

integration point for the quadrature in the HEXA8  element. In most finite element 

programs, the stiffness matrix is computed by applying a quadrature rule such as 2 x2 x2  

eight point Gauss integration rule ( herein referred as the full integration scheme) for the 

HEXA8  element. Despite its complication, explicit evaluation of the terms in Eq.(2.20) can 

be derived as shown in [20]. However, since evaluation is performed based on the 

quadrature point of the 1 point reduced integration scheme, and since it is explicitly 

obtained, computation time required is significantly reduced compared to the conventional 

full integration scheme.

The concept of directional reduced integration can be expressed as follows. If a 

given structure is thin shell type, and if the direction ^ 3  in the master element approximately 

coincides to the thickness direction of the shell like structure while the ^ £ , 2  plane is 

identified with its tangent plane, the shear strains related to the ^ 3  axis should not generate 

much contribution to the strain energy. If such an element is subject to plane bending, the 

shear contribution to strain energy should be minimal, especially in very thin structures. 

This physical consideration leads the reduced integration should be applied in the plane 

direction in order not to include the excessive effect from the finite element deformation 

that yields the shear strains related to the thickness direction. Therfore, reduced integration 

is applied both in and £ 2  directions, while the "exact" integration is applied in the 

thickness direction, i.e., in the £3  direction. This means that the terms related to both 

and £ 2  ; K ^ 1, K eS2» K g ^ 2, K e^ 3, K gS^1, and Kg^ 1^ 3 should be "neglected" in 

forming the stiffness matrix. Similarly, a rod type structure is modeled so that the rod axis 

is coincided with the £3  axis in the master element, the full integration should be applied 

both in the r and s direction which form the cross section of the rod, while the reduced
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integration must be applied in the t direction that is the axis direction. That is, the terms 

KgS3, Kê 3, KgS^1 , and Kg^ 1^ 3 are eliminated from the element stiffness matrix.

A major advantage of the Directional Reduced Integration is that any artificial 

viscosity which was introduced in earlier methods by Hallquist[23,24] can be eliminated. 

In the directional reduced integration method, by underestimating strain directionally, 

difficulties of shear related terms are avoided. Thus, a thin and deeply curved structure like 

an engine cylinder block can be solved using solid elements if the mechanics are correctly 

reflected in the process to form the stiffness matrix.

Details of such a method can be found in Koh and Kikuchi[20]. Here only a brief 

description of the method is given. Evaluating the expression of the isoparametric relation 

of geometry between an arbitrary finite element and the master element:

Z l . x i  / 2 - x i  / 3 . X 1' x f

“ x2 > =

.X3-

/ l .X 2 I2 -X2 *3*X2 

L Z1.X3 Z2.X3 /3.X3 J
&

C.xi+hi.xi52$3+l»2.xi53$l+l>3-xi$l$2+l»4-xi5i52$3 

+ C.X2+hi.X2^3+h2.X2^3^1+h3-X2^1^2+h4-X2^1^3 

,C.X3+hi.X3^3+h2.X3^3^1+h3*X3^1^2+h4.X3^1^3J

where

(2 .22)

/ iT = i  {-1 , 1, 1 , - 1, - 1, 1 , 1 , - 1 }, I 2 t  = v  { - 1 , - 1 , 1 , 1 , -1 , -1 , 1 , 1 },

/3T = i {  -1,-1,-1,-1, 1,1, 1,1}, cT = i {  1, 1, 1, 1, 1, 1, 1, 1},
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h iT = | {  1 , 1 , - 1 , - 1 , - 1 , - 1 , 1 , 1 }, h2T = ^ {  1 , - 1, l . - l . - l ,  1 , 1 , - 1 },

h3T = ^{ 1,-1, 1,-1,1,-1, 1,-1}, h4T = y {  -1, 1,-1, 1, 1,-1, 1,-1},

and the coordinate in each direction are

X1T  =  { x n ,x i 2 , x i 3 , x i 4 ,x i 5 ,x i 6 , x i 7 ,x i 8 } ,

X2T  =  {X21,X22,X23^24,X25>X26>X27,X28}>

X3T = {X31,X32,X33,X34,X3S,X36,X37,X38}.

(2.23)

Its inverse relation can be obtained as

-1
/l*Xi /2*xi / 3.X1 r x n

< & > = Zl.X2 /2 .X2 / 3-X2
'  I * 2 I

U3J -  Z1.X3 /2 .X3 /3.X3 - U

h . x \  / 2 . x i  Z3. X 1 

/ 1 .X2  /2 -X2  / 3 .X2 

Z1.X 3 Z2 .X 3 Z3 .X 3 -I

C .x i+ h i.x i^ 3 + h 2 .x i^ 3 ^ l+ h 3 .x i^ i^ 2 + h 4 .x i^ i^ 3

C.X2+hi.X2^3+h2.X2^3^1+h3.X2^1^2+h4-X24l^3

C.X3+hi.X3^3+h2.X3^3^1+h3.X3ll^2+h4.X3^1^2^3,

(2.24)

Since a similar expression to (2.24) can be obtained for a "displacement" vector v :
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b i.v i  b 2 -vi b3.vi 

bl.V 2  b 2 -V2  b3.V2

bi.V3 b2-V3 b3.V3 J

Z l . v i  / 2 - v i  Z 3 - v i  

Z1.V2  h - y2 Z3 .V2  

/ 1.V3 Z2 *V3 /3 .V3 J

Z l.x i /2-x 1 / 3 .X1 

Zl-X2 Z2*x 2 Z3.X2 

L Z1.X3 I2 .X3 Z3 .X3

one can obtain

' V l ' “ b i . v i  b 2 » v i  b 3 . v i  “ 'xi

i  V2 > — b l . V 2  b 2 - V 2  b 3 . V 2 < x 2  >

.V3> -  b i . V 3  b 2 -V 3  b 3 . V 3  _ <X3-

a.V i+gi.V i^3+g2-V l^3?l+g3-V l?1^2+g4-V l^l^3 

a. V2+g 1 .V2?2^3+ g 2* V2^3^ 1+ g 3*V2^ 1 ̂ 2+ g 4 -V2^ 1 ̂ 3  

.a.V3+gi.V3$2$3+g2-V3$3$l+g3*V3$l$2+g4.V35l52$3-

where

a = c - (c.xi) b i - (c .X 2  ) b 2  - (C.X3 ) b 3 , and

gi = hi - (hi-xi) b i - (hi.X2 ) b 2 - (hi.X3> b3 , i= l, 2, 3, and 4.

Approximating the differential relation between x and £ by:

(2.25)

(2.26)

(2.27)
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a ” 3xi 3x2 3X3 “ r a 13£l Hi Hi Hi 3xi
a > —

3xi 3x2 3x3
> a

3fe 3̂2 3̂2 3̂2 S5x2
a 3xi 3x2 3x3 a- 3̂3 3̂3 3̂3 “ <.5x7>

Z l .x i  /2 .X 1  Z3.X1 

/l.X2  Z2 -X2  Z3 .X2 

/1 .X 3  / 2*x 3 Z3.X3 _

5x7a
5x2
5

-5x7>

differentiation with respect to the coordinate system x is approximated by

'  d '  
5x7
5

5x2
a

v-5xi’>'

> =

"  Zl-xi Z2 -X1 /3 .X1 -T r a > 

H i

Zl-X2 h ‘*2 Z3 .X2 <

-A.I 
<N

D|£
f^

-  Zl.X3 /2 .X3 Z3-X3 - ^3^3-J

Thus, the bilinear and trilinear terms in £, are differentiated in x as
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'  3 "| 
5x7
a

5x2
a

-5x3-

> (^2^3) «

"  fl.Xl *2 -Xl Z3 .X1 " -T r 5 "

a
Zl.X2 fe.X2 Z3-X2 < 11 r©

-  Z1 .X3 fe*X3 Z3 .X3 - -a ^ v

“  Zl*xi Z2-X1 Z3 .X1 “ -T " 0 "

Zl-X2 /2 -X2 /3 .X2 < $3 >

-  Z1 .X3 Z2 .X3 /3-X3 - ^ 2 '

(2.30)

etc.

Applying these relations, the first derivatives of v in x can be approximately 

obtained in terms of Furthermore, noting that polynomials in £ in the master element 

Qm can be explicitly integrated if the Jacobian of the transformation is approximated in a 

polynomial form of £, the element stiffness matrix due to the bilinear form of ae(.,.), where 

subscript 'e' denotes the integration domain which is now restricted in Qm instead of the 

whole domain Q, can be approximated without applying a quadrature rule.

2.3 Estimation of Approximation Error in Space

In finite element approximation there are several types of errors, such as 

interpolation error, integration error, and boundary approximation error. Among these 

errors, the finite element interpolation error is considered to be the dominant one. Once 

one can estimate the amount of finite element interpolation error in a particular finite element
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model, it is possible to determine accuracy of the approximation and then it becomes 

possible to apply adaptation processes to reduce such error.

It is noted that the finite element approximation error is, in general, bounded by the 

interpolation error in the elliptic boundary problem. This means that if the interpolation 

error is reduced by adapting finite element models, the amount of the finite element 

approximation error is also automatically reduced. A popular choice of an error measure 

which can estimates the amount of approximation or interpolation error in each finite 

element, is represented in terms of the norm related to the strain energy. The mean square 

of the strain energy generated by the difference between the exact solution and its finite 

element approximation or its finite element interpolation is the quantity representing the 

amount of the error for the adaptive method. Details of the method to evaluate such a 

quantity can be found in Kikuchi[40] and Kikuchi and Torigaki[42].

For the present problem it is necessary to modify the method in [40], since it is a 

dynamic problem of a linearly elastic structure. In this problem, there is a quasi­

orthogonality property of the approximation error of the semi-analytic finite element

approximation ( that is the finite element approximation of (2.14) in space but the exact 

evaluation of the differentiation in time) of the original problem (2 .1 1 ), yielding the 

identity:

(iih - u , uh - u ) + a( «h- u , «h - u )

= ( Vh - i i , Vh- u ) + a( Vh - u , Vh- u ) , at any time t, for every Vh. (2.31)

If the error of a finite element approximation at time t is defined by:

e2 = (iih - u , «h - u ) + a( «h- u , Uh - u ) ,  (2.32)
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it may follow from (2.31) that an error indicator that can estimate the amount of the 

approximation error is defined by the quantity:

e 1 2= ( Vh - i i , vh - u ) + a( Vh - u , v ^  u ), (2.33)

using the interpolation Vh of the solution u of the original problem (2.11). Although the 

following inequality holds for the elliptic ( i.e. static) problem:

e < e i ,  (2.34)

it may not be valid for the present problem. However, from the physical consideration of 

the nature of the dynamic problem that the energy is conserved, the error indicator ei is a 

strong and natural candidate of the quantity that represents the amount of the approximation 

error. Following this, an error measure in each finite element Qe is now defined by

Ee 2= ( Vh - u, Vh - u )e + ae( Vh - u , Vh- u ). (2.35)

It is noted that:

e i = ( 2  E e 2  )J/2 < (NE)l/2 Max Ee, (2.36)

where NE is the total number of finite elements in a model.

Now we shall discuss how to compute error measure Ee. To do this, note that the 

relation of differentiation of two coordinate systems for the finite element approximation in 

space is given by
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r d 1 ” 9xi 9x2 9x3 " r 9 1
9*1 35i 35i 35i 9xi

d > _ 9xi 9x2 3x3 < 9
352 3^2 3^2 9x2

a 9xi 9x2 9x3 9
LafeJ L d$3 3^3 9^3 -J -̂9x3-

” J11 Jl2 J13 1 r 9
9xi

* \

J21 J22 J23 << 9
9x2 I 9

-  J31 J32 J33 - '-9x3-'

(2 .37)

Since the interpolation errors for the hexahedral 8 -node element are given by:

v h  -  u  =  \  [ (  1 -  £ l 2  )  u  $ i $ i  +  ( l - ^ 22 )  u  5252 +  ( l - ^ 32 )  u  i;3$3 ] ,

(V h -  U )^1  =  j  [-2 U +  (  1 -£22 )  U $ l$ 2$2+  ( 1 -  ^ 32 )  u  41^ 3^3 ] ,

(Vh - u )%2 = \  [ -2 £ 2  u 5252 + ( 1  - ^32  ) U 52 5 3 5 3 +  (1  - £i2  ) U $25141].

(V h -  U )$ 3  =  2 [ -2  £ 3  U 5353 +  (  1 -  5 l 2  )  U$3$ l $ l +  (  1 -  ^ 2 2  )  U 535252 ] .

(2.38)

where

92u j  93u
“ 5 U , —  and u 5 ,5 3 2 =5 ^ ,  etc.

Thus the interpolation errors in the first derivatives in the physical coordinate 

system (xi,x2 ,x3 ) are given by using the relation:
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(  V h  - u ) x i " J l l J12 J 1 3 ” - 1 < ST
1 c

\ (  V h  -  U ) x 2 > = J21 J22 J 23 < (  V h  -  u )£>2 f

.  (  V h  - u ) x 3 . -  J31 J32 J32 - L (  V h  -  u )£3  j

and Eq. (2.38). Since the interpolation error of (vh-u)^i and others are given in Eq. (2.38), 

the interpolation error of (vh-u)x and others can be written in terms of the second 

derivatives of the exact solution u with respect to the global coordinate system x by 

applying the relation:

u ^ i  = (J n  uxi +J12 uX2 +Jl3 ux3 )£l

= J ll ^1 Uxi +J12 UX2 +J13 Ux3 + J ll UX1£1 +J12 UX2$1 +Jl3 Uxl^l 

= J l l2 Uxlxl + Jl22 Ux2x2+J 132 Ux3x3

+2 ( J11J 12 Uxlx2+J 12J13 ux2x3 +Jl3Jll UX3xl )» etc. (2.40)

Since the components of the Jacobian matrix Jn ,....,J33 are proportional to the finite 

element size, the interpolation error is also proportional to it. It is noted that the second 

derivatives of the exact solution u which is unknown a priori, must be estimated only by 

using the finite element approximation Uh. There are several ways to estimate the second 

derivatives, see the details in[40].

The term Vh - u are computed by applying Newmark-P approximation (2.16) of 

the interpolation error Vh - u.
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2.4 Test of PRI for Dynamic Problems

2.4.1 Computer Program

The directional reduced integration method is extended to dynamic problems and its 

accuracy is tested using several examples in which the analysis program FEM3D, an in- 

house finite element code, is used. Then it is implemented in NIKE3D[24]. The 

preprocessing routine for generating hourglass control parameters, which controls 

integration over a region specified by user, has been implemented in INGRID[25] which is 

a preprocessor to NIKE3D.

All programs developed here are available on VAX11-780 and APOLLO 

DN3000/DN4000.

2.4.2 Numerical Examples

To test the accuracy of the finite element solution of dynamic problems, the 

following examples are selected for the free vibration problem which yield the eigenvalue 

analysis:

- Beam model with one end clamped,

- Plate model with one side clamped, and

- Fabricated panel model.

Specifically, the test cases are intended to examine the accuracy of DRI with hourglass 

control by solving eigenvalue problems. It is noted that several static problems were tested
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to examine the solution accuracy of DRI in [20]. Thus, in this work numerical testing is 

limited to vibration problems.

In solving examples selected, the discretization of the examples are performed using 

regular HEXA8  elements of right angles. In most structural problems, however it is not 

possible to generate finite element meshes using only such elements when structures of 

complicated 3-D geometry is solved. In such a case, freely-shaped HEXA8  elements may 

used to describe geometry. The accuracy of solution using such freely-shaped elements is 

geneally worse than the one using regular HEXA8 elements. However, it is shown that the 

accuracy of solution does not decrease even in such cases when directional reduced 

integration is used toformulate HEXA8  finite elements[20].

EXAMPLE 1. (Cantilever Beam)

A 3-D cantilever beam is modeled in four different discretizations. Its geometry and 

material properties are given in Fig.2.1. For all discretizations, the reduced integration 

with hourglass control is applied only to the longitudinal direction when element stiffness 

matrices are formulated.

Eigenvalues obtained for the different discretizations are shown in Table 2.1 and 

mode shapes for the case of 64 elements are also given in Fig.2.2. As the total number of 

element increases, in general, the solution by DRI with hourglass control converge to the 

one obtained using Euler's beam theory. Convergence was achieved in all the test cases.

In these test cases, relatively accurate eigenvalues are obtained in the lower modes. 

Remarkable improvement is achieved in higher modes about the y-direction if discretization 

in the x-direction is doubled. In the third test case, in which discretization in the y-direction 

is doubled while numbers of discretization in x and z directions are kept same as the second
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discretization, improvement is not achieved compared to the second case. In the final test 

case, in which the mesh density in all directions is doubled as shown in Fig.2.1, solution 

errors dropped to less than 1 % and the eigenvalues of the higher modes in both the x- and 

y-direction are improved and agree more closely to those obtained using Euler's beam 

theory.

Numerical tests of DRI using four different discretizations suggests that if we apply 

the same discretization to both the x and y directions, the stiffness in the x direction is 

getting softer in the case where the aspect ratio of the cross section is larger than one. In 

Table 2.1, errors in each mode are shown. The maximum error of the eigenvalues in the 

bending modes is less than 10 % up to the 6 th mode. It seems that the solution accuracy of 

dynamic analyses is not as good as that of the static analyses as seen in Koh and 

Kikuchi[20]. However, although solution accuracy obtained by using the hourglass control 

algorithm is relatively low for higher modes, it can be applied to the 3-dimensional dynamic 

analysis of a large structure at a cheap cost if only the lower modes are of interest.
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E=2.068EllPa,Poisson’s Ratio = 0.3, Density = 7800 kg/m^, 

Dimension 0.5b x 0.25t x 4L (m), total element: 64

Fig. 2.1 Properties and Undeformed Configuration of Cantilever Beam
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1st. Mode 
co = 84.367

2nd. Mode 
co = 164.82

3rd. Mode 
co = 524.67 4th. Mode 

co = 979.54

Frequency in Hz 

Fig. 2.2 Mode Shapes of Cantilever Beam Model (64 Elements)
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Table 2.1 Natural Frequencies of Cantilever Beam

U nit: Rad/sec

Case 1 2 3 4 Euler

Beam

Type of 

ModeMode
No.

8  Elem. 
1 x 1 x 8

16 Elem. 
1 x 2 x 8

32 Elem. 
2 x 2 x 8

64 Elem 
2  x 2  x 16

1 0.28512 0.28384 0.27001 0.26892 0.25559 1 .bending y-d.
2 0.53843 0.53643 0.53519 0.53363 0.51176 1 .bending x-d.
3 2 .0 2 1 2 1.8093 1.9175 1.7168 1.6019 2 .bending y-d.
4 3.2043 3.1876 3.2009 3.1848 ( torsional) 1 .torsion z-d.
5 3.6050 3.2572 3.5851 3.2415 3.1966 2 . bendingx-d.
6 6.3862 5.2649 6.3833 5.0085 4.48512 3. bendingy-d..

EXAMPLE 2.(Plate Model)

A plate clamped on one side was selected to study the dynamic characteristics of the 

3-D solid model formulated by using the directional reduced integration with hourglass 

control. The dimensions and properties of the model are shown in Fig. 2.3. The model 

analyzed here was discretized in 4 different ways. The hourglassing will be controlled in 

both longitudial directions and not controlled in the thickness direction. Results were 

verified by comparing them with the solution obtained by NIKE3D using the Hughes-Liu 

plate element.

Eigenvalues for different models are shown in Table 2.2 and compared to the 

solution of NIKE3D. In the first two test cases, in which the number of divisions in the 

thickness direction is only one, solutions are not as accurate as those of plate theory. As
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seen in Table 3, eigenvalues up to the third mode are quite accurate with error less than 

10%. In the next two test cases, where the thickness direction was discretized in 2 

divisions, the solutions are more accurate and comparable to that of plate theory. Mode 

shapes of the model using 124 elements are shown in Fig.2.4.

It is noted that HEXA8  elements and QUAD4 plate/shell elements have the same 

number of the degrees of freedom in each element. Each QUAD4 element needs a 

transformation matrix between the global coordinate system and the local one defined for 

each finite element. Thus, after forming the element stiffness matrix of QUAD4 in the 

local coordinate system, it must be transformed into the global one, before being assembled 

into the global stiffness matrix. This means that many computational steps are required for 

plate/shell elements. Roughly speaking, six to eight HEXA8 elements require the same 

amount of computing time as one QUAD4 element to form the global element stiffness 

matrix. This means that using solid HEXA8  elements to form a finite element stiffness 

matrix is not as expensive as using QUAD4 shell elements.

Table 2.2 Natural Frequencies of One-Side-Clamped Plate

U nit: Rad/sec

Mode
HEXA8  Element Plate Element (NIKE)

No.
32 Elem. 128 Elem. 16 Elem. 64 Elem.

1 270.65 274.95 265.18 268.56
2 615.01 643.74 616.65 640.63
3 1521.0 1636.3 1545.0 1619.6
4 1723.0 2041.1 1834.5 2006.7
5 1876.2 2090.0 2126.1 2287.6
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Young's Modulus : 2.07E11 Pa, Poisson's ratio: 0.3, Density :7800 kg/m3 
Dimesnion : IB x IB x 0.025t (m)

Fig. 2.3 Properties and Undeformed Configuration of Plate Model

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

31

1 s t .  Mode 
co = 276.57

2 nd. Mode 
co = 656.48

3 rd . Mode 
co= 1717.1

Frequency in Hz 

Fig. 2.4 Mode Shapes of Plate Model (128 Elements)
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4  th. Mode 
(0 = 2172.0

5  th.  Mode 
(0 = 2431.6

Frequency in Hz 

Fig. 2.4 Mode Shapes of Plate Model (128 Elements)
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EXAMPLE 3 ( FABRICATED PANEL MODEL)

In the third example, a simple fabricated panel structure model was used. Unlike a 

simple beam or a simple plate structure we are expecting to see more complexity, showing 

some characteristics of real, complex, structures like an engine cylinder block. In this 

example, 3 different discretizations o f the model, which are shown in Fig. 2.5., are 

analyzed and compared using NIKE3D with the Hughes-Liu shell element. Eigenvalues 

obtained using HEXA8  elements with DRI are listed in Table 2.3 and are compared to the 

solution obtained using the Hughes-Liu shell elements.

Eigenvalues for different models are shown in Table 2.3 and compared to the 

solution obtained using NIKE3D. As the number of elements increases, the solution 

generally becomes better.

Table 2.3 Natural Frequencies of T-Shape Fabricated Beam Model 

________________________________________U nit: Rad/sec

Mode
No.

HEXA8  Element Plate
Theory

Euler's
Beam
TheoryModel 1 Model 2

1 0.012166 0.012760 0.011269 0.012177
2 0.014064 0.014467 0.015426 0.015064
3 0.025479 0.026167 0.025908 0.026385
4 0.037692 0.039750 0.035137

5 0.065169 0.069358 0.061186

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

34

Young’s  Modulus E=1 Pa
P o i s s o n ' s  R at io 0.3
D e n s i t y 1.0 k g / m
Width 1.0 m
Height 0 .5 m
Length 4 .0 m
T h i c k n e s s : 0 . 0 2 5  m

P l a t e  Model

B r i c k - E l e m e n t  Model 1 B r i c k - E l e m e n t  Model 2

Fig. 2.5 Discretization of T-Shape Beam Model
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2nd. Mode 

co = 0.01406(0 = 0.01217

4th .  Mode

to = 0.03770

Frequency in Hz

Fig. 2.6 Mode Shapes of T-Shape Beam Model (Brick Element Model #2)
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CHAPTER III

FINITE ELEMENT ANALYSIS OF 
DIESEL ENGINE CYLINDER BLOCK

3.1 In troduction

Over the last two decades, diesel engine development and manufacturing have seen 

unprecedented technological changes. Global competition has made life cycle cost, quality 

and reliability more important than ever. Therefore, diesel engine manufactures can no 

longer afford prolonged, expensive, product development time usually required in the 

design-test-redesign sequence of the past practices. These factors along with an increasing 

emphasis on thermal efficiency, higher outputs, and higher operating temperatures, put 

considerable responsibility on the designers. Such needs have caused the 

component/system analysis process to become an important ingredient in the design of a 

diesel engine. To analyze a complex diesel engine system and its subsystem, one of the 

most valuable tools is the finite element method.

With the advent of large, high speed computers, the finite element method is 

commonly used in industry to solve the structural and thermal equation systems which 

describe the complex behavior of engine structures. In particular, finite element analysis 

allows the performance of engine components to be predicted in the design stage.

36
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The scope of finite element analysis goes beyond just stress and thermal analyses. 

Finite element analysis is also necessary in order to improve complex component systems 

whose performance is dependent on their mutual interaction under the thermal and 

mechanical loads.

As early as 1972, researchers used finite element analysis to study the dynamic 

characteristics of simple engine components and demonstrated reasonable agreement with 

experimental resultsfl]. This information was later published in 1975[2]. In 1979 it was 

shown that complex structures such as an engine block could be modelled accurately[3]. 

Subsequent work has shov/n good correlation with experimental results[4,5,6]. In past 

research, numerical modelling of the structure of an engine has been performed using at 

least two different models, one for static and thermal analysis, and a separate model for 

dynamic analysis[9,10]. Engine stress and thermal analyses typically employ finite element 

models composed of either 20-node solid elements, while for dynamic analysis 4-node 

plate and shell elements are commonly used. This approaches is inefficient because 

different finite element models of the same structure must be developed.

In order to reduce the time and the cost for analysis and simulation of a particular 

design, it is essential to reduce the duplication of effort required to develop different finite 

element models for these different analyses. Therefore, a finite element model of an engine 

has developed using simple HEXA8  finite elements formulated with the directional reduced 

technique. These elements are optimized in order to shorten computation time required to 

form the stiffness matrices, as well as to increase accuracy for stress, thermal and dynamic 

analyses.

In this chapter, earlier works are reviewed to show how development of modelling 

and analysis of engines has progressed. A new unified approach to thermal, stress and 

dynamical analysis is presented.
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3.2. N atu re  o f Engine Design Analysis

3.2.1 Basic Design Concept

In order to improve the performance of a new diesel engine program, it has been 

suggested that the basic design process be conducted without being influenced by 

conventional design concepts and biases. Some clear targets that might guide the design are 

as follows:

1) High output with low fuel consumption,

2) Light weight and compact size,

3) Excellent reliability and durability, and

4) Low production and maintenance costs.

Within these constraints, basic design parameters are selected such as bore size, 

stroke, engine rated speed, number of cylinders, combustion system characteristics, type of 

cycle. Once these parameters have been selected and combined with other functional 

requirements such as, power, size, weight, etc., the basic design forcing function in a 

diesel engine can be established. Additionally, engine sound levels are affected by the 

dynamic characteristics of the structure and radiation effectiveness of its structure.

With these basis, the conceptual design can be processed. In the initial design stage,

a graphical design facility can create a conceptual design at minimal man power cost. The

finite element method can then be adopted for all thermal, stress, vibration analyses in order 

to achieve an optimal design. Specifically in the design analysis process, the finite element 

method allows an analyst to study the behavior of the engine and its various components in
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their operating environment, which helps to optimize the design prior to actual prototype 

development.

Finite element analysis has been used for many years and offers many advantages. 

The principal advantage of the method is the reduction of in the development time and the 

ability to analyze main engine structure and components without having to fabricate them. 

This allows an assessment of several design alternatives in a relatively short amount of 

time, and at a relatively small additional costs.

3.2.2 Structural Analysis of an Engine Structure

In order to meet the constraints set up prior to manufacturing, the structure of an 

engine must be optimized both statically and dynamically. Moreover, due to high 

combustion pressures, the structure radiates considreable noise, which needs to be reduced 

where possible. Successful design of quieter engines depends upon an understanding of 

the vibration mechanisms within the engine structure, and of the way in which those 

vibration-generated noises are transmitted to the environment.

When forces are applied to the engine structure by the combustion process and 

mechanical interactions, small, abrupt movements occur which physically displace the 

external surfaces peripherally ( forced vibration) and cause the structure to vibrate in 

resonance in a large number of normal modes (damped natural vibration). Many of these 

normal modes involve motion at a right angle to the plane of the surface, which in turn 

forces the air in contact with it to move. At low frequencies, the air moves without 

significant pressure variations being generated, and little energy is imparted to the air. At 

higher frequencies, sufficient pressure may be built up by the vibration to cause 

significant sound power to be radiated. At higher frequencies still, the surfaces of the
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structure vibrate in a very large number of normal modes, each making a contribution to 

the total sound radiated by the engine. Since the structural response of the running engine 

to the cylinder pressure development depends upon the natural modes of the cylinder 

block, the whole engine block should be examined by either eigenvalue analysis or forced 

response analysis with fluctuating forces being applied to the top face of the piston. Of 

cause the pressure force is applied to cylinder head also. This tends to lift the from the 

block. The head itself adds considerable stiffness to the head/block structure[ll-19].

Previous studies show that there are several types of mode shapes which may be 

classified as follows[ll-13]:

Global bending and torsional modes. In some cases rigid body modes due to 

poor structural support,

Local modes in which mainly the bearing supports move, and

Skirt panel modes, where the predominant movement is in the bottom of the 

block.

In general, the global modes, like the bending and torsional modes, are excited at 

the lower frequency ranges, while the local and skirt panel modes are excited at higher 

frequency ranges. These mode shapes show that the stiffness along the cylinder block 

varies from the top, which is very stiff even without the cylinder head, to the bottom which 

is relatively flexible.

It should be emphasized that the vertical stiffness is important from a strength point 

of view, but the horizontal stiffness is the main factor contributing to noise radiation. This 

means that the bottom of the engine structure radiates noise with very small displacements 

at high frequencies. This excites the oil pan and transmits vibration to the automotive body.
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This is due to the fact that vibration normal to the crankcase is mainly produced by bending 

in the horizontal plane.

3.2.3 Finite Element Modeling Approach

Three basic types of finite element model have been considered for engine analysis;

a) 3D Solid Element Model,

b) 3D Solid and Shell Element Model,

c) Shell and Beam Model.

Finite element models built primarily of solid elements should yield the most 

accurate solutions, but incur significant penalties in terms of computer time and problems 

of mesh generation. Solid and shell elements can be combined in a hybrid model. Solid 

elements can be used to modes areas of complex solid geometry and shell elements can be 

used for more shell-like regions such as crankcase panels and the like. These models offer 

some time and cost reduction over the all-solid models. The models including shell and 

beam elements are constructed with no solid elements. The beam elements are used to 

supply additional stiffness arising from geometric features such as stiffening ribs. 

Generation of these models involves considerable experience to achieve valid geometrical 

approximations, but they may offer cheaper running costs.

Among these conventional model types, solid elements are usually chosen for stress 

and temperature analyses. However, the preferred elements for vibration prediction on 

engine blocks have been the plate and shell elements since out-of-plane motion, which is 

the major motion in engine vibration, is controlled by an accurate bending stiffness 

formulation. Care should be taken, when using plate elements to model cylinder block
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structures, in that great attention must be paid to accurate definition of plate intersections, 

where, physically, structures are more of a solid nature.

It should be noted that in vibration analysis for noise prediction, the outer surface 

out-of-plane motion is o f prime importance. When solid elements are used the accuracy of 

this out-of-plane motion is inadequate since the bending stiffness of high aspect ratio 3D 

solid elements is very poor. Thus, many researchers have used plate and shell elements 

exclusively to model an engine structure for dynamic analysis.

In the engine modeling process, the first step is to identify the major static 

components. Typical static components are the cylinder head, gasket, cylinder block and 

crankcase of an engine. Then, the engine structure can be subdivided into more manageable 

subcomponents. Further subdivision into several subassemblies is also possible.

In a conventional design analysis process, at least two separate finite element 

models for an engine structure are required to simulate the engine both statically and 

dynamically. Consequently, an systematic and unique approach to engine modelling will be 

introduced.

3.2.3 New Modeling Technique using 3-D Solid Finite Element

To reduce the time and the cost for analysis and simulation of a particular design, it 

is essential to reduce the duplication of effort required to develop different finite element 

models for different analyses.

One tool used to strive toward these objectives involves the integration of various 

design activities such as design layout, geometric modelling, and design analysis based on 

a common geometric description. The use of solid modeling is a popular method to define
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geometry and is easily extended to geometric and structural analysis. The use of a solid 

modeler enables an engineer to develop model geometry, while the mesh generator included 

in such software packages help to automate the task of creating nodes and elements from 

the geometric description of the design.

In generating finite element meshes, it is necessary to consider a consistent way to 

generate three-dimensional solid elem ents. without changing the basic geometric 

representation used by the solid modeler. To do this, 8-node hexahedral elements or 4-node 

tetrahedral solid elements are a natural choice. This approach of using a three-dimensional 

solid finite element model for a rather complex geometrical structure is rapidly replacing 

more conventional model development methods which use higher order finite elements 

such as 20-node hexahedral elements. A significant time savings may be realized by using 

the simplest element to generate a finite element model. The 8-node hexahedral element is 

assumed to be one of the best choices to generate meshes in this regard.

Therefore, a finite element model of a complex structure such as an engine has been 

developed using simple HEXA8 finite elements. These elements are optimized in order to 

achieve a shorter computing time to form the stiffness matrices as well as increased 

accuracy for stress, thermal, and vibration analyses as shown in chapter 2.

In chapter 2, the practical applicabilities of the Directional Reduced 

Integration(DRI)technique, developed by Koh et. al., has been tested successfully, and has 

proven to be a more efficient method than other methods like the selective reduced 

integration method, to achieve accurate results in three dimensional analysis. Therefore, 

DRI allows us to solve structural problem modeled with 3D solid elements. DRI is 

insensitive to the element rotation and solves shear related difficulties. Even a thin and 

deeply curved structure like an engine cylinder wall can be solved with the continuum 

approach using DRI as well as the plate and shell structures.
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3.3_Finite Element Model of Cylinder Block

3.3.1 Preparation of Finite Element Model of Cylinder Block

The finite element modeling and analysis are performed on a Daewoo-M.A.N. 

D0846HM Diesel Engine. Finite element generation is carried out using INGRID, which 

was developed at the Lawrence Livermore Natxonal Laboratory[25]. In order to supply 

NIKE3D[24] parameters for the directional reduced integration method, with which finite 

element formulation is performed within NIKE3D, INGRID has been modified to generate 

these data from the geometry.

The structure is divided into several parts, a group of 6 cylinders, a cylinder block, 

a flywheel housing and the bearing caps. The cylinder block is made of cast iron and it is 

not symmetric. The block has a great number of stiffening ribs. To ease the work of 

modelling, we take advantage of the representative nature o f only a few key parts of the 

cylinder block. As far as the cylinder block is concerned in this analysis, the main point is 

to represent the mass distribution of the cylinder block and the stiffness of cylinder block 

wall carefully. The displacement and vibration characteristics of the lower block are 

considered to be more important than those near the top of the structure. The upper part of 

cylinder block is much stiffer than the bottom. Thus, the lower part of block and its bearing 

housing are modeled more closely than are the upper part of the engine.

The finite element model o f the diesel engine block for the study is shown in 

Fig.3.1. This finite element model consists of 5640 nodes and 2828 HEXA8 elements.
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3.3.2 Structural Check of Model

Finite element predictions are uncertain without confirmation of the accuracy of the 

model. These predictions depend upon the analyst's judgement when constructing the finite 

element model as well as the capability of the code used for analysis.

To check the integrity of the model, the mass of the finite element model is 

compared to the actual component being modeled before beginning computations. Actual 

mass data is listed in Table 3.1 and compared with the mass which is computed in a routine 

of NIKE3D based on input geometry data. As seen in Table 3.1, the total acual mass is 

197.7kg which includes the mass of 6 cylinder liners, while the computed mass was 201 

kg. The total mass of the cylinder block was found by actual measurement to be 1.6% less 

than the figure obtained from the computer model. The finite element model corresponded 

to the nominal blueprint dimensions.

Table 3.1 Physical Data of D0846HM Diesel Engine

U nit: kg

Item Quantity Unit Mass

Cylinder Block Assembly 1 188.2
(without Bearing Cap)

Cylinder Liner 6 9.5
Cylinder Head 3 64.8
Flywheel Housing 1 40.95
Crankshaft Assembly 1 66.7
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3.4 Vibration Analysis of Diesel Engine Cylinder Block

3.4.1 Objects of Vibration Analysis

In this work, our attention was focused on the free vibration analysis. Therefore, it 

is not within the scope of this paper to analyze the stresses under more complex boundary 

conditions such as combustion forces. Such an extention is reserved for a future study.

Identification of the free vibration model of the engine structure is important for the 

following reasons:

An understanding of the mechanisms of vibration may be obtained, which 

may suggest potential design improvement.

Free modal data provides a powerful mechanism for the validation o f finite 

element models.

When used in conduction with radiated noise spectra, a knowledge of modal 

frequencies and shapes aides the synthesis of design improvements.

Assessment of free vibration results is basically split into two stages. The first is the 

validation of the analysis, achieved by standard checks such as ensuring that rigid body 

mode frequencies are at least two orders of magnitude lower than the first non-rigid mode.

The second stage of the assessment is the comparison of mode shapes and 

frequencies, preferably against experimental data. It is very difficult to identify equivalent 

mode shapes, for any but the first two or three modes by visual inspection. The 

comparison with experimentally obtained data is a severe and useful check on the validity 

of the finite element model. If both the total mass and the free vibration modes agree well, 

then it may be assumed that the model is accurate in terms of the important mass/stiffness 

distributions.
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3.4.2 Free Vibration Analysis for Correlation with Modal Testing

A reliable model can be obtained, when one modifies the finite element model in 

order to correlate the computed modal frequencies with the measured ones. In this section, 

the analysis is performed in order to match the lower two eigenvalues to the ones from the 

modal testing of real engine structure before more detailed analysis is performed.

For this analysis, the finite element formulation is performed using the directional 

reduced integration with hourglass control. DRI is applied to the finite element formulation 

for the lower part of cylinder block, both skirt panels and the block partition plates. 

Through the correlation study, the finite element model is modified and refined, to obtain 

the final model to be used in later analyses.

A correlation study is carried out to determine modal characteristics of Daewoo- 

M.A.N. D0846HM diesel engine block, as well as to verify the finite element model whose 

lowest modes correspond to the ones obtained from modal testing of the engine [see 

chapter 6 and appendix 2 for the details of this method].

The experimental set-up, excluding the flywheel housing, was mounted on a rigid 

bed plate and supported by a ball at each corner. The structural influence of a supporting 

structure can be avoided by using small ball supports in order to simulate simply supported 

boundary conditions. The frequency response for this configuration is obtained as shown 

in Fig. 3.2, and the mode shapes at the lower two frequencies are shown in Fig. 3.3.

The first resonant frequency measured in this test was 199.67 Hz. The second 

resonant frequency was 430.0 Hz.
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Fig. 3.2 Frequency Response Plot from Modal Testing

199.67H2

Fig. 3.3 Mode Shapes from the Modal Testing Results
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First Mode Shape o f Cylinder BJock(211.9Hz)
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Table 3.2 Eigenvalues from Finite Element Solution 
and Modal Testing

U nit: Hz

Mode
No.

Finite
Element

Modal
Testing Remark

1 211.9 199.67 1. Bending Mode
2 484.2 430.0 Torsional Mode
3 ---- 573.5 2. Bending Mode

In the finite element analysis, simply supported boundary conditions were assumed 

to simulate the actual boundary conditions imposed by ball supports. This helped to achieve 

improved correlation with the results from modal testing, in which the results were 

compared according to the experimental set-up configurations [See chapter 5, for detailed 

configuration of experimental set-up's and its difference]. The eigenvalues from the finite 

element analysis are listed in Table 3.2. The results show that the two lowest frequencies 

are 211.9Hz and 484.2 Hz for the model are close to 199.67Hz and 430.0Hz which were 

observed experimentally. The Mode shapes of two lower modes are shown in Fig.3.4. 

These mode shapes of cylinder block are close to the ones obtained from modal testing as 

seen in Fig 3.3 and Fig 3.4. The finite element solution are greater than the experimental 

ones by 6% for the first mode and 11% for the second mode, repectively. Even though 

DRI with hourglass control evaluates the stiffness matrix of HEXA8 elements than the 

conventional integratiuon scheme, it is recognized that it is sometime difficult to eliminate 

such errors. This might be improved by some treatmenets; increasing elements of the model
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and applying adaptive method. However, in view of reducing the size of the computational 

memory space and time, this model may be acceptable to be used for further analysis.

3.5 Dynamic Characteristics of Diesel Engine Cylinder Block

The finite element model of the cylinder block obtained from the correlation study 

may be used with confidence to study the dynamic characteristics of the given engine. A 

more detailed analysis of the cylinder block structure is presented in this section.

In the previous study, simply supported boundary conditions were assumed. 

However, when simply supported boundary conditions are assumed, some spurious rigid 

body motions can not be avoided. It can be difficult to determine whether some mode is 

rigid body or not. Since the experimental measurement of the cylinder block was limited to 

obtaining only the three lower modes of free vibration, the boundary condition could be 

changed to fixed boundary condition, in which the displacements are fixed and the rotations 

are allowed to move.

For this analysis, the finite element formulation was performed using the directional 

reduced integration with hourglass control as before. DRI was applied to the finite element 

formulation for the lower part of cylinder block, both skirt panels and the block partition 

plates.

It has been known that whole range of vibration modes are related to the vibration 

characteristics of various parts of the engine as known in the literatures. In particular, the 

highest frequency modes of vibration make the greatest contribution to the noise radiation. 

Even though the mechanism of the noise generation is not considered, the modes of the 

noise transmitting structures in the cylinder block are important to reduce the vibration 

level at certain modes which dominate most of noise transmitting through the strucure.
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From the eigenvalue analysis of the engine block, only the first 11 modes were 

obtained due to the space limitations of the computer used in this study. The eigenvalues 

from the finite element analysis are listed in Table 3.3. The results show that the two lowest 

frequencies are 214.2Hz and 378.9 Hz. The mode shapes of modes 8,9, and 10 are shown 

in Fig.3.5. While it would be dersirable to look at higher modes, only modes of 8 to 11 

.whose frequency levels are greater than 1000Hz, were in this study.

The structural components on the external surfaces of the engine which radiate most 

of the engine noise are the crankcase panels, waterjacket panels, side covers, and sump. 

Many of these have numerous flexual modes of vibration, which are able to radiate noise 

efficiently above a certain frequency. This frequency is dependent oon the size of the 

engine. Typically it is approximately 1000 Hz for a mid-sized engine.

Table 3.3 Natural Frequencies From Finite Element Solution 
under Fixed Boundary Condition

U nit: Hz

Mode Frequency Mode Frequency

1 214.2 7 801.5

2 378.9 8 1038.4

3 430.6 9 1193.0

4 462.5 10 1207.0

5 503.3 11 1257.9

6 725.1 12 —
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The crankcase and water jacket vibrate in a series of modes. At high frequencies, a 

group of closely-related mode shapes appear, with only small differences in mode shape 

and natural frequencies between the members of each group. The normal modes which 

appear in mode shapes from the results are:

Crankcase bending modes with torsion of cylinder block,

Fundamental crankcase panel mode. With respect to any reference panel, the 

adjacent panels on that side of the engine, and the panel opposite on the other 

side of the engine, move 180 degree out-of-phase to the reference panel.

Skirt-flapping modes on long-skirted crankcases.

Most of these modes are capable of radiating a significant amount of the noise from 

a conventional mid-sized engine.

The normal modes described above are fundamental to the response of the structure 

to mechanical impacts as well as to the cylinder pressure development. The distortion of the 

crankcase and cylinder block castings excites forced vibrations and resonant vibrations in 

the oil pan and valve-gear covers.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

57

3.6 Conclusion

A finite element modeling and analysis of a diesel engine cylinder block was 

performed. Also, basic dynamic characteristics of the cylinder block are discussed before 

the detailed analysis was carried out.

To reduce the time and the cost for analysis and simulation of a particular design, it 

is essential to reduce the duplication of effort required to develop different finite element 

models for different analyses. The HEXA8 element is used to generate meshes. This 

approach of using a HEXA8 finite element model of a rather complex geometrical structure 

is more efficient to reduce system size than conventional model development methods 

which use higher order finite elements such as 20-node hexahedral elements.

Using a finite element model of the engine cylinder using HEXA8 elements, it was 

attemted to show that once the engine vibration problem is solved accurately, HEX A 8 

elements can be used for further thermal and stress analyses. Consequently, engine 

analysis is optimized with respect to shorter computation time required to form the stiffness 

matrices, and increase accuracy for stress and dynamic analyses.

The finite element model of a diesel engine cylinder block was analyzed using this 

newly developed directional reduced integration with hourglass control. It was shown that 

a fairly accurate eigenvalues were obtained when the results were compared with 

experiments. A significant time saving was realized by using the simplest element to 

generate a finite element model.
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CHAPTER IV

APPLICA TIO N OF ADAPTIVE FINITE ELEM ENT M ETHODS
TO VIBRATIO N ANALYSIS

4.1 Introduction

The adaptive method has been introduced in this decade to improve accuracy of 

finite element approximations based on a posteriori error estimates. Since Oliveira 

published his paper on mesh optimization in 1968, there have been many investigation on 

adaptive finite element methods. Earlier adaptive finite element method and mesh 

optimization were based on the variational principles together with mathematical 

programing methods for optimization[29,30,31,32]. Quasi-optimum meshes were 

attempted without utilizing 'a posteriori' error which can be computed from approximate 

solution. In 1976, Babuska and Rheinbolt[35,79] developed a mathematical theory of the 

adaptive finite element methods. They applied an estimated upper bound error as defined 

by interpolation error to the adaptive methods. Since Zienkiewicz et. al. [82] introduced of 

the adaptive method to engineering community in 1982, the adaptive finite element method 

was quickly accepted by engineers.

Recently, the adaptive finite element method has been introduced to some CAE 

system. However, most of the adaptive methods currently in use are still primitive in terms 

of user friendliness and the method used to achieve the desired accuracy. Therefore, in

58
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order for the adaptive method to provide valuable information in the design analysis 

process, adaptive finite element method should be equipped with more up-to-date 

capabilities.

The adaptive methods can be applied not only to static problems but also to 

vibration problems. The main reason why the adaptive method is attractive in vibration 

problem, or transient problem, is its capabilities of controlling the amount of approximation 

error introduced by finite element methods. The finite element discretization can be 

optimized by relocating nodes(r-method), subdividing elements(h-method), and by 

increasing the degree of the polynomials for approximation of finite element methods(p- 

method). Details of each techniques are discussed in [40,42], In most vibration problems, 

h-adaptive method is more efficient and applicable than r-adaptive method.

There was some discrepancy between the finite element solutions and actual test 

results of the cylinder block. In order to reduce these discrepancies, we employ an 

adaptive finite element method. When a large structure like an engine block is solved, we 

have to determine how to efficiently refine elements and manage such data. If a 

conventional direct method is used, one has to deal with the increase in bandwidth caused 

by introducing new nodes during mesh refinement. In order to use the adaptive method in a 

design analysis process of large structure, such a problem should be resolved.

In this chapter, some vibration problem is solved using adaptive methods. An 

additional investigation is made into the mesh refinement process, especially the h-method, 

in conjunction with space index mesh generation scheme.
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4.2 Adaptive Methods in Vibration Problems

4.2.1 Selection of Error Measure

Most computational overhead of the adaptive method involves error estimation and 

the subsequent remeshing operation is a major task of adaptive finite elements. At every 

time step we estimate the error at all grid points and minimize this error by remeshing the 

structure. As the new mesh is created, then its initial values are obtained by interpolating 

data from the previous mesh points.

As mentioned before, there are several adaptive schemes and mesh moving 

strategies based on approximate error measures.Several different error indicators and 

methods o f implementation are possible. The error estimate Ee of eq. (2.35) for each 

element is used to control the motion of the mesh and the refinement or coarsing strategy.

4.2.2 The r- Adaptive Method

The r-method, first investigated by 01iveira[31], is based on the design of optimal 

finite element grids. If  the error measure of each element, Ee , is determined, we can 

consider a problem to minimize the maximum finite element error of the domain with the 

design variables of nodal coordinates as following:

The necessary condition o f Eq.(4.1) requires that the error in each element be 

constant, that is:
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Once the error measure Ee is computed, the strategy of nodal relocation can be set 

up. There are several versions of relocating scheme of nodes. In general, the new location 

of the n-th node can be defined such that

xn = E x e C ( E e /A e ) / Z ( E e / A e )  (4.3)

where the summation is taken over the finite elements connecting to n-th node, xec is the 

coordinate of the centroid of Oe and Ae is the area. Relocation and finite element analysis 

with new discretization are repeated until the condition of Eq.(4.2) is met. The schematic 

view of the relocation scheme according to (4.3) is shown in Fig.4.1.

Fig. 4.1 Schematic View of the Node Relocation Scheme
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It has been noted that the relocation scheme in r-adaptation method cannot represent 

the necessary condition Eq.(4.2) appropriately if  the neighboring elements are too 

distorted[42]. In order to solve this difficulty, a computational geometry, which has only 

rectangular elements, is prepared for node relocation as seen in Fig. 4.1. Indeed, the 

parametric (transformation) relation between the physical and computational geometry can 

be obtained by using a mapping mapping method.

The procedure for node relocation is as follows:

1. evaluate the error in the physical domain according to Eq.(2.35),

2. perform node relocation in the indexed space (computational domain) 

according to Eq.(4.3),

3. then find the new node location by applying the transformation relation.

4.2.3 The h- Adaptive Method

The h-method, originally studied by Sewell and Babuska, is the method in which 

refinement is performed by subdividing elements, which have a large amount of error, into 

much smaller ones. Using the adaptive grid, analysis is performed again to compute the 

error measure in each finite element, and the subdivision process of finite elements is 

repeated. Even though the necessary optimality condition is never satisfied by h- 

adaptation, the absolute value of the difference of the maximum and minimum error 

measure decreases considerably as well as the value of the maximum error measure. 

Furthermore, the amount of finite element approximation error can be reduced. These are 

limitations of the h-method.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

63

The h-method adaptive remeshing scheme illustrated in Fig.4.4 is used. In the 

figure, numbers denote the relative amount of approximation error in each element. When 

one element has a relative error of 2, and the other element have relative error of 1, then the 

element of amount 2 will be subdivided.

1 2

1 1

1

1 1

(a) before remeshing (b) after remeshing

Fig. 4.2 Remeshing Scheme in h-Adaptive Method

In this case, the parametric space is used to generate subelements just the same as in 

the r-adaptive method. Since it is quite difficult to identify additional constraint condition, 

and to generate additional nodes and element connectivities in 3-D space. This method is 

computationaly expensive relative to the r-method.

4,3_New A daptive M esh G eneration Technique

4.3.1 Representation of Geometry

The first step, in this section, is representing a 3-D surface. The boundary of the 

desired geometry is defined using several cubic curves. 3-D surface can be generalized
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from those cubic curves to bicubic surfaces defined by cubic equations of two parameters, 

s and t. Varying both parameters from 0 to 1 defines all points on a surface patch. If one 

parameter is assigned a constant value and the other parameter is varied from 0 to 1, the 

result is cubic curve. As with curves, we will work only with the parametric equation for x, 

denoted by x(s,t).

One form used to represent x(s,t) is:

x(s,t) = SCX T T, (4.3)

where S=[ s3 s2 s 1 ], T=[ t3 t2 t  1], This is called the algebraic form of the 

representation, because Cx gives the coefficients of the bicubic polynomials. There is also a 

Cy and Cz which gives the coefficient of y(s,t) and z(s,t). However, there are several form 

to define C's. The following simple blending function[86] is used to interpolate 3-D 

surfaces:

r = (1- £ )r(0, Tl) + ^ r( l, T| ) + (1- n  )r&  0 )+  T| r&  1 )

- (1- % ) ( l-Tl) *(0» 0 ) -  (1- \  )n r ( 0 ,1)-  ^ ( l-T)) r(l ,  0 ) -  Z,i\ r( l, 1 ) .  (4.3)

4.3.2 Base Mesh Generation

For adaptive mesh generation, the idea employed by the INGRID mesh generation 

package, which generates complete input files for the codes NIKE3D and DYNA3D, will 

used. Geometries are described primarily by using index space concepts which came from 

the program INGEN[25].
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(0 , 1) (1 , 1)

I I I I I   5
(0,0) (1,0)

X

Fig. 4.3 Transformation for a Surface

i(0 ,l)

r(0,0)

x

Fig. 4.4 Coons Blending Function
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An index space is a three-dimensional discrete coordinate system with integer 

greater than or equal to 1 in each of the three directions. The three discrete coordinates are 

labeled I, J, K axes respectively. Each point in the index space, (i, j, k), represents a nodal 

point. Element are defined as a group of adjacent nodes in the index space.

In an index space, a region can be defined. A region is any rectangular or cubic 

block of nodes. A region is usually defined by a block of nodes in an index space. Second 

higher definition id part. A part is a collection of regions which can be grouped and 

generated conveniently in an index space. The final model is a collection of parts. Each part 

has its own index space and independent of other parts. Parts are connected together either 

by global coincident node removal, slide surfaces, or other constraints.

4.3.3 Adaptive Mesh in a Time Dependent Problem

The time dependent problem differs from the steady-state problem, in that 

irregularities in the solution may migrate over the grid during a given time interval. The grid 

thus has to adapt itself continuously to meet the accuracy requirements of the solution. If 

some changing feature of the solution is lost at an intermediate step, then this loss may be 

unrecoverable in future solution steps. Time dependent problems require that, besides a 

refinement capability, we also have an unrefinement capability. In general, we require that 

only groups of elements that were refined before can be unrefined. The error of a group of 

elements is equal to sum of the errors of the elements in that group.
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4.4 Practical_Considerations for the h-Method

4.4.1 Initial Mesh

The initial mesh is generated in parametric space. In parametric space, the 

coordinates are expressed by index numbers. The coordinates, (ns,nt), in parametric space 

have the following relationship with space index number(Ns, N t):

Ng = Ni + Xs. ns , n§ = l,2,....NSmax »

and

Nt = Nj + Xt • nt , nt = l,2,....NTmax •

where Xs and Xt are allowable subdivision numbers in one element in s and t directions, 

respectively when QUAD4 elements are used. Also, NSmax and NTmax are maximum node 

numbers in s and t direction of the initial grid. Thus, some nodal points in index space may 

not be occupied by initial grid, acting as fictious nodes.

4.4.2 Consecutive Steps for Refining Elements

Assume at this point that we have identified an element that can be refined without 

violating any topological constraints. Then the actual processing of the refinement is very 

simple.

1. Once the finite element solution is achieved using the initial mesh or previous 

mesh and the error measure for each element is computed, then these error 

measures for each element are averaged. Using some fraction of averaged 

error measure, the appropriate division level is determined for each element
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when the amount of error of that element is larger than a specified fraction of 

the averaged error.

2. In Fig.4.5, the node and element numbering sequence is illustrated when 

remeshing of grid is needed according to the level of error. Initial space 

indices are generated according to the maximum level of subdivision. Initial 

mesh is generated based on those space indices, thus, some indexed 

coordinates are not acdve.

3. Generate new element and node numbers in the index space. In general, there 

are active numbers corresponding to the nodes of real mesh and inactive 

numbers not occupied by mesh in the index space. We choose the element 

and node numbering sequence as illustrated in Fig.4.5. Then element 

numbers are sorted in order.

4. Compute the connectivities of the elements. This can be easily deduced from 

the activeness data array of elements according to space indices. These 

element connectivity data are sorted in order to achieve better efficiency.

5. Adapt the connectivities of the surrounding elements. Whereas the 

surrounding elements pointed to one single element, they will now point to 

the four subelements. Then, nodal constraints are determined.

6. Interpolate solution over the new nodes.

Certain situations are treated as exceptions. For example, if  an element is 

successively refined, but its neighbor is not designated to be refined on either pass, then 

we force the coarser refinement of the neighbor to ensure a smoother mesh grading and to 

simplify the data structure! see Fig 4.6]
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(c) Final Node Numbering of
Adaptive Mesh in Parametric Space

Fig. 4.5 Numbering Sequence of Elements and Nodes in the h- Adaptive Method
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Rejected Accepted

Fig. 4.6 Refinement of a Neighbor Elements to Avoid Multiple Constraints

Going through these steps, one sees that we have updated or created all items of the 

original data structure. Moreover, the initial data was sufficient to all these operations on a 

local basis, i. e. no loop over the mesh nodes or elements was necessary to do the 

operations. In addition, no data about the refinement history of the element was necessary.

In this refinement scheme, refinement element data structures have following data 

associated with neighbor elements, such as element number, refinement level, neighbor 

element, and constrained node data. Here, the refine level indicates the level of refinement 

of an element, e.g., 0=unrefined, l=refined once, 2=refined twice, etc.

This h-mesh generation scheme can be generalized to the 3-D case with minor 

modification. This scheme is quite helpful to generate a mesh for 3-D complicated structure 

and reduce the extraction time of data.
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4.4.3 Constraint Conditions

An essential part of the refinement strategy is that, in order to satisfy continuity over 

the boundaries of the elements, some nodes need to be constrained. First we describe how 

constrained nodes are identified using the current data structure. Secondly, we show how 

the node array is used to identify the degree of freedom of an element. Finally, we show 

how the element matrices are computed and adapted to reflect the elements.

4.4.3.1 Identification of Constraints

When the level of a neighbor of an element is lower that the level of the element, 

then the element has a constrained node on that side. The actual node that is constrained can 

be identified by looking for the connection number by which the first element is connected 

to the neighbor. Depending on whether the connection number is smaller or greater than 

four, we can conclude which node is constrained.

4.4.3.2 Consideration of Constrained Conditions in the Element Matrices

The variable of constrained node of the element is equal to the average of the two 

comer nodes which possess the constrained nodes. Actually, the location of the constrained 

node of the element may not be found as the average of the physical location of the two 

comer nodes. Once we have constrained node data, we compute the element matrices in 

usual way. In order to reflect the constraints, the shape function of constrained node is 

equal to 1/2 at the physical location of node 2. Thus, we have following penalty matrix for 

constrained conditions when QUAD4 elements are used:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

4.5 Application of the Adaptive Method to the Vibration Problems

Adaptive methods are used to solve a cantilever beam modeled with 8  node 

hexahedral elements. The beam is loaded under a sine function of unit magnitude. It is 

known that although a large time increment At is assumed, the Newmark-P method will 

provide a fairly good solution which is close to the exact solution. Thus, in this example, 

we will investigate how an adaptive method will improve solution of dynamic response and 

see what kind of adaptive method is preferred in solving a vibration problem.

The finite element discretization of the model is shown in Fig.4.7. At each time 

step, the error o f each element is calculated. The problem is solved by the r-method using 4 

elements and 8  elements respectively, and is solved by the h-method using an initial 

discretization of 4 elements. According to the error measure, the finite element model is 

remeshed based on both the r-method and the h-method and then, reanalyzed. In the h- 

adaptation one-time subdivision for each element is performed.

Results of solutions by the r-method are listed on Table 4.1 and 4.2 and Fig. 4.8. 

Results o f solutions by the h-method are shown in Fig. 4.9. The responses of the beam 

using both r- and h- method at each time step are shown in Fig. 4.10.

As shown in Table 4.1 and 4.2, in the r-adaptation, the maximum error measure is 

reduced satisfying the optimality condition at each time step, while the total amount of error 

remains unchanged. Consequently, the r-adaptive mesh is achieved at each time step as
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shown in Fig. 4.8. If r-adaptation is applied several times at each time step the mesh may 

converge close to the optimal mesh at a given number of nodes and elements. In the h- 

adaptation, even though the necessary optimality condition is not satisfied, the amount of 

finite element approximation error can be reduced and the refined mesh configuration 

obtained by subdivision of elements whose error amount is large as shown in Fig. 4.9. 

However, since the numbers of elements and nodes are increased by refinement, some 

additional justification is needed to consider the h-adaptation method.
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(a)Deformed Shape at Time Step 3 with Regular Mesh of 4 Elements

(b)Deformed Shape with Mesh Adaptation by r-Method 

Fig. 4.8 Response of Cantilever Beam using r-Method (4  Elements)
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(a)Deformed Shape at Time Step 3 with Regular Mesh of 8  Elements

(b)Deformed Shape with Mesh Adaptation by r-Method

Fig. 4.9 Response of Cantilever Beam using r-Method ( 8  Elements)
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(a)Deformed Shape at Time Step 3 with Regular Mesh

(b)Deformed Shape with Mesh Adaptation by h-Method 

Fig. 4.10 Response of Cantilever Beam using h-Method (4  Elements)
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Table 4.1. Error Distribution of Beam 
( 4  Elements)

Unit: m

Elem Time Step 1 Time Step 3
No. Initial Mesh r-adaptation Initial Mesh r-adaptation

1 0.7726E-02 0.2244E-02 0.1670E+00 0.4515E-01

2 0.1553E-01 0.5036E-02 0.3357E+00 0.1089E+00

3 0.387 IE-02 0.5152E-02 0.8367E-01 0.1179E+00

4 0.7191E-02 0.2464E-02 0.1554E-01 0.5327E-01

Table 4.2. Error Distribution of Beam 
( 8  Elements)

Time Step 1 Time Step 3
Initial Mesh r-Adaptation Initial Mesh r-Adaptation

1 0.1211E-02 0.7869E-03 0.2619E-01 0.1701E-01

2 0.3036E-02 0.2078E-02 0.6562E-00 0.4492E-01

3 0.1616E-02 0.6603E-03 0.3494E-01 0.1427E-01

4 0.1197E-02 0.7843E-03 0.2588E-01 0.1696E-01

5 0.7143E-03 0.4184E-03 0.1544E-01 0.9045E-02

6 0.3750E-03 0.2369E-03 0.8106E-02 0.5121E-02

7 0.1544E-03 0.483IE-03 0.3339E-02 0.1044E-01

8 0.2260E-03 0.1278E-03 0.4885E-03 0.2763E-02
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As seen in Fig. 4.11, the h-adaptation method provides better solutions than the r- 

adaptation method. The r-adaptation method can not provide better solutions for this kind 

vibration problem even though the optimum mesh may not be achieved as the h-method.
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Fig. 4.11 Response of Beam at Each Time 
Step According to Methods at Free End

w/o adptive 
w/ h-adaptive 
w/ r-adaptive 
analytic solution
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CHAPTER V

VARIABLE TIME STEPPING ALGORITHM FOR 
IMPLICIT TIME INTEGRATION

5.1 Introduction

There have been several time integration schemes developed to solve dynamic 

problems[59,60,66,77]. These schemes have been verified and found to be quite 

successful in many different types of problems in the area of dynamics. Previous authors 

have suggested that integration schemes must be examined for accuracy and stability 

performance on each individual dynamic problem.

A number of implicit integration methods are in common use for structural 

dynamics problems, and have been reviewed, both analytically! 50, 54, 6 6 , 69,71], and 

by numerical experiment[52,68,73,74,75]. The implicit algorithms are unconditionally 

stable. The evidence indicates that these algorithms can use quite large time steps, and will 

provide reasonable accuracy in the solution, when the determination of lower modes are of 

prime concern. It is seen that the implicit algorithm has been one of the most effective time 

integration methods for the transient analysis of linear structural dynamics. A substantial 

saving of computational effort can be attained by using an unconditionally stable algorithm 

because a large time step can be used.

79
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Most numerical experiments show a steady and rapidly increasing growth of error 

as the time step increases. Accuracy requirements suggest that it is important to control the 

error in the time matching scheme. In the practical and professional environments, it has 

become evident that there is a great need for an algorithm that can calculate the optimum 

time step in an automatic fashion during the solution process. The requirements for such an 

algorithm should be: significant error control, computational efficiency, and convenience of 

implementation. Many researchers have addressed this problem, but it is recognized in the 

literature that no satisfactory general approach is available. Strategies implemented in many 

structural-response codes are mostly empirical or are dedicated to particular situations.

It is a difficult task to assess what the error will be for large systems for which the 

solution consists of a priori unknown combinations of modal response. Moreover, the 

characteristics of the total responses may change with time, thus, the optimal time step may 

change during the solution process. Such variations in response are very common for 

transient and nonlinear problems. The situation is even more complicated when an 

unconditionally stable algorithm is used.

There have been several variable-step integration procedures proposed for both 

explicit methods by Krogh[62], Brayton et al.[63], Shampine[53], Zadunaisky[64], 

Park[48], and implicit methods by Wilkinson[65], Hibbit et a/.[70], Key[6 8 ]. The four 

strategies proposed in the above citations are based on the local truncation error, the 

residual terms, Richardson's extrapolation method and the deviation from linearity.

The use of the local truncation error is a well-known technique. Several different 

approaches to error estimation have been reported in the literature. Gear and Tu[67] used an 

error measure based on truncation error using a predictor-corrector pair applied to a variable 

multi-step method. Similar expression can be found in Shampine[53], in which the 

remainder is used to define the error estimation and was used with Euler method. Close
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examination of the error estimation defined by a predictor-corrector pair leads to the fact 

that the apparent frequency can be defined and has been used to adjust time step in explicit 

method such as central difference scheme. Another approach other than to measure the 

error can be found in Park[48]. In this case, the highest apparent frequency was used to 

control the step size in a central difference method. In most implicit methods, for example 

in Hilber[57], it was attempted to measure the error committed in each time step using a 

Taylor's series expansion to verify the accuracy of his a-method. However, the use of the 

local truncation error using a predict-correct pair has been commonly used and is 

considered to be a very reliable measure to control step size changes. Although this 

appears to be the case for high accuracy requirements, i. e., the relative local error is less 

than 1 0 '5, its applicability to oscillatory problems such as structural dynamic problems has 

not been firmly established. Moreover, in most typical structural dynamic analysis, lower 

accuracy is often satisfactory if this keeps the analysis cost low. Thus, by improving the 

traditional truncation error based stepsize change technique, a cost-effective method is 

presented which will provide a reliable solution.

The method described in this work has many similarities to the technique of step 

selection developed previously and shown in the literature. The method is primarily based 

on a local error control technique using a truncation error measure. In order to enhance 

effectiveness of the traditional algorithm, several improved techniques are introduced for 

adjusting time step size for solving multi-degree-of-freedom systems.

As a first attempt, a measure of the error committed in each time step during the 

process of time integration is newly defined. Since the use of truncation error using a 

predictor-corrector pair cannot reflect the real characteristics of error development in each 

time step for each individual problem in conjunction with an integration scheme used. The 

definition of error measure should be appropriate for the specific time integration method, 

for example, Newmark-p method. In addition, we have assumed a precisely defined twice
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differentiable forcing function for obtaining a measure of the truncation error for the forced 

response system. In practice, forcing functions consist of experimentally observed loads at 

discrete time intervals, therefore the computation of the required derivatives is not always 

possible. To resolve such difficulties and to reduce unnecessary computation even when 

the force can be approximately determined at every time step, a new approach is presented.

The new approach is made to fully implement time step control to the multi-degree- 

freedom system. Since the previous development is made on a decoupled equation based 

on modal decomposition, a parameter to control error or to select step size is obtained by 

superposing several properties up to several modes. If the order of matrices is large, the 

computer time required to solve all eigenvalues and eigenvectors is enormous. It is tedious 

to extract only several lower modes of the system, even though these several modes seem 

to represent dominant structural dynamic characteristics. Thus, "the current frequency", 

which is derived from the Rayleigh Quotient, is introduced in evaluating the evolution 

matrix for time integration. Employment of this "current frequency" provides very accurate 

measure of the truncation error and saves the computation time for evaluating error at each 

time step.

The success of the method is dependent upon the efficient implementation of the 

above algorithm to a main solver. These concepts and other practical aspects will be 

presented in this work through solving typical dynamic problems.
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5.2 Time Integration of a Dynamic System

5.2.1 Equation of Structural Dynamics

Consider the matrix equation of structural dynamics:

CM]{*u} + [C] {it} + [K]{u} = {F}, (5.1)

with initial conditions

{u(0 )}={d>, {u(0 )}={v},

where [M] is the mass matrix, [C] is the damping matrix, [K] is the stiffness matrix, (u) is 

the displacement vector, and (F) is the external force vector, and {d} and {v} are the given 

initial data.

Applying the modal decomposition procedure to (5.1) yields the corresponding 

SDOF equations which, if  we suppress the modal index I, appear as:

u + 2 ^ (0  u + (02u = F, (5.2.a)

5.2.2 Temporal Discretization

An approximate solution of (5.1) can be obtained using the Newmark-P time 

integration algorithm. In the Newmark-P method, a Taylor series expansion of 

displacements and velocities is used to construct linear relationships.
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Consider the following family of one-step difference methods to obtain approximate 

solutions of the initial-value problem:

At2
U n+l=un + At u n + - 5 - [ ( 1  - P )u n + P u n+1] + Rn, (5.3.a)

ii n+l= u n + At ( 1 - y )i in + At yiin+l+Rn’ , (5-3-b)

un+ 1  = - —  - 1 ( 1 -  P)i» , (5.3.C)
p A t2  pAt p 2  H

where Au = un+1 - un with initial conditions

u(0 )=uo, 

u(0 )=uo, 

*u(0)=(Fo - 2 £cou0  -to2  u0 ).

Here, At is the time step size, n is the time step number, un, un, and, un are the

approximations to u(tn), u(tn), and u(tn), respectively, in which Fn= F(tn) ,and P and 7  are

the free parameters of integration which govern the accuracy and stability of the algorithm. 

If P= j  and 7 = j  the Newmark-P method is obtained. If P= j- and 7 = j  the Wilson-0

method is obtained.

The remainder terms are given by

Rn = -(P - £)h3u(3)(T) + 0 (h4u(4)), (5.4.a)

Rn’ = -(Y - j)h 2u(3)(x) + 0 (h3u(4)), (5.4.b)

and the maximal accuracy is obtained when 7^ — and P= j . These remainder term will be

further discussed in the section 5.3.2. It can be verified that this choice corresponds to a 

linear interpolation of acceleration over the time interval.
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For transient dynamic problems, Eq. (5.1) may be written in time difference form 

as follows:

[ M ] { i in + 1 } + [ K ] { Aun + 1 } = {P(xn) }n + 1  - {F(x")}, (5.5)

where

(P(xn)}: external Load,

(F(xn)}: internal Load,

un+1 : displacement = x n+1 - x n, and

\in+ 1 : acceleration at time n+ 1

Substituting Eq.(5.3) to Eq. (5.5) to yields:

[ K* ] { Aun+1) = {P(xn ) ) n+ 1  - (F*(xn)}, (5.6)

where

[ K* ] = [ K ] + [ M ] /  P A t2, and

| f *} = { F } - [ M ]  ( ^ - + s -(t - P ) u” )-pAt p 1

From the Eq.(5.4) to (5.6), we can express the implicit time integration scheme in 

terms of yn, and yn+1 as follows:

[Ai] {yn+1} = [A2] { yn } + { Hn} (5.7)

where

1+ At 2P©2 2At 2p£co2 
1 . Atyco2 l+2AtY^m.
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[A2] = 1- ^ < l - 2 p ) c o 2  At (l-At(l-2p)£co) 

-At (l-y)co2  l-2At (l-y)£co

{Hn} =

{yn+i}=

A t-2
(1-2 P)Fn+2pFn+1} 

k At{(l-y)Fn+yFn+1} ,

in+1 1

,n+l I’

and

Also, Eq.(5.7) can be written as follows:

{yn+1} = [A] { yn } + { Ln}, (5.8)

where

[A] = [Ai]-1[A2]

l+2Aty£a> - 2 A t 2 P£co2  

-At you2  l + A t 2 pco2_
1- ^ < l - 2 p ) c o 2  At (l-At(l-2p)^co) 

-At (l-y)to2  1-2At (l-y)i;a>

{Ln } = [Ai]
At2 

I  At

At2 1
(l-2P)Fn+2pFn+1} I

At{(l-y)Fn+yFn+1} ,

[Ai] -l
A t2  At2 A-i-< l-2 P ) ^ - 2 P

At(l-y) Aty .

f Fn 

1 F n + 1 )■

and J =(1+ At 2 pco2)(l+2At y^co)-( 2At 2 p^to)(At yco2).
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s t a r t

O .K .

check local stability

compute error for n+ 1

solve KAu = Af

update variables

Predict state variables

estimate optimum step

Fig. 5.1 Schematic Procedure of Direct Time Integration with Newmark-P method

From Eq.(5.8), if we assume there is no damping coefficient, the amplification 

matrix [A] can be written as follows:

[A] = [Ai]-1[A2]
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- [  1 
J A 1 L - A t ^

0

1

Ja i

1 -

yco2 l + A t 2 Pto2. 

At 2

1- ^ < l - 2 p ) c o 2  At 

At (l-y)co2  1

-(l-2 p Jco2 

At3

At

-At co2+ -y-(y-2P )co4  1 +At 2 (P-y)co2

A n 0  A i2°"|
Ja i L A2 1 0  A2 2° j  ’

(5.9)

where Jai=1+ At 2 Pco2. Here, it is noted that the matrix [A] -1 has the following properties:

[A] ' 1 = detfnrt
A 2 2  -A i2 l  
-A 21 A n J

j _  r  A2 2  -A 1 2 1  
Ja L -A 21 A 2 2 J

j Ai 2 r A 220 - a  i2 ° i  
Ja  L -A2 1 0  A n 0  J

_ 1 A2 2 0  -A i2°]
J a ° L -A 210 A n 0  J

where Ja°  denotes Ja i2/Ja  and Ja  is l+h2 co2(P - y  + j ) .

(5.10)

5.2.3 Difference Equation

The Newmark-P method can be written in terms of the following equations:

zn+1 = f(tn+i ,y n+i),

{ F (t) - 2^0) u - © 2u } ,

(5.11.a) 

(5.1l.b)
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At2
u n+1=un + At zn + ~2 ~ [( 1 - 2p )zn+ 2P zn+1 ], and 

un+1= un + At [(1 - y )zn + y zn+1] .

Also, we have the complementary relationship about z: 

z n+ l = z n + At[( 1 - Y)zn + Yzn+1]-

(5.11.C) 

(5.1l.d)

(5.11.e)

Here, yn+1 and zn+1 are the approximation of y(tn+i) and y(tn+i). Thus, from Eq.(5.11.a) 

to Eq.(5.1 l.e), we obtain following equation:

jn+l

»n+l u"

A t A t 2 , '
—  -J-CY-2 P)

0 At (1-7) . 

A t A t 2
2  - ^ ” <2 P-Y)
0  At Y

zn+1l 
zn+1J ’

or

yn+l = yn + At <Dn , (5.12)

where

0>n = ( Ca zn + Cb zn+1) ,

and

Ca =
‘ 1 

2 A-f(7 -2 P ) c b =
1 A t . . .  .
2  ~ 2^ 2 P"7)

. 0 d - 7 )  - . 0  7

If and Y=g> the equation stated above can be written as follows:
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yn+l _  yn + I A t ( zn + zn+l) 5 (5.13)

which is the well-known trapezoidal rule.

5,3- Com putational Aspects of the Newm ark-B M ethod

5.3.1 Source of Error and Local Error

Let u(tn) denotes the solution of Eq.(5.1) obtainable with exact computations. The 

computational error en is defined as the residual:

en= u ( t n) - u n , (5.14)

where un is the computed solution. The computational errors results from the propagation 

and accumulation of local errors committed at each time step. Consequently, an analysis of 

Eq.(5.18) must begin with the study of local errors. Also, identification and analysis of 

computational errors resulting from mathematical approximations of algorithms should be 

emphasized.

Local error may be studied by ignoring the processes of propagation and 

accumulation. These errors can be classified into inherent error, truncation error, and 

round-off error. Mathematical models of engineering problems including structural 

dynamics or any physical problem inevitably contain some inherent errors. These errors 

result from incomplete understanding of natural phenomena, the stochastic or random 

nature of many processes, and uncertainties in experimental measurements. Often, a model 

includes only the most pertinent features of the physical process and is deliberately stripped 

of superfluous.
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Even if an error-free mathematical model could be developed, it could not, in 

general, be solved on computer. A digital computer can perform only a limited number of 

simple arithmetic operations on finite, rational numbers. Thus, rounding error can be 

developed by the use of finite precision arithmetic.

The errors introduced in approximating the solution of a mathematical problem by a 

numerical method is usually termed the truncation error, or solution error, of the method. 

In the next section, however, truncation error will be explained in more detail.

5.3.2 Local Truncation Error

To solve the initial value problem of Eq.(5.1) consider a general linear multi-step

method. The general linear multi-step method may be written in the form:

k k
(Xj Un+j = At ^  Pj fn+j , (5.15)

j=0 j=0

where (Xj and pj are constant and h is the step size; we assume that (Xk * 0 and that not both

a 0  and P0  are zero. Since (5.15) can be multipled on both sides by the same constant

without altering the relationship, the coefficient <Xj and pj are arbitrary to the extent of a 

constant multiplier.

From Eq.(5.15), we can derive any linear multistep methods of given specification. 

For Newmark-P method, which is the most reliable one step implicit method, both ocj and 

Pj can be determined.

un+1 + ocqu" = At( p ifn+l+p2 fn ) (5.16)

we write down the associated approximate relationship:
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u(tn + At) = un + At[ PiuMCtn+At )+ (32 uWftn) ], (5.17)

and choose oc0, P i, P2 , so as to make the approximation as accurate as possible. The 

following expansions are used:

At2
u(tn + h) = u(tn) + At uC^Ctn )+ ■2 p i(2 )(tn) + ....

At2
u(!)(tn + h) = u(!)(tn)+ At u(2)(tn )+■- j f ^ 3) ^ )  + ....

Substituting in Eq. (5.16) and collecting the terms on the left hand side gives:

C0u(tn) + Ci At ud)(tn)+ C2 At2U(2)(tn )+ C3At3u(3)(tn) + . . . . -  0, (5.18)

where

C0  = 1+ a  , Ci = l - P i - P 2 , C2 = | - p i ,  C3 = i - | P i  .

Thus, from the above relationship, its local truncation error can be defined by:

% = ( 5  ‘ 5 pl)At3 U(3)(£) , tn < C < tn +At. (5.19)

The local truncation error term defined in Eq.(5.19) is intentionally called the 

"remainder" of the variable approximation method itself which is previously mentioned in 

Eq.(5.14). The local truncation error introduced in the process of the Newmark-P method 

is further discussed in next section.

5.3.3 Contribution of Truncation Error to Global Error in the Newmark-P Method 

From Eq.(5.13), Newmark-P method may be rewritten as follows: 

y(tn+1) = y(tn ) + At d>n +xn , (5.20)
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w here t n is  the trucation error term.

It is a  w ell know n the hypothesis that II xnll <  x At3, fo r all tn e  [ 0 ,a  ], w here x is a 

positive  constant.

L e t E n =  y (tn)-yn , then w e have fo llow ing  relationship:

E n+1 =  E n +  A t[  O n - $ n ] + x n ,  (5 21)

w here O  n =[<t>i n , <J>2 n ]T and  0 _ n =  <J) (tn ).

Suppose O  to  be continuous in  t and  y , w e then  have:

| O n - O n I < L l y n - y n I,

w here

L = [  l J !  u U -  <5-22>

o r

L i 1 = ICai ll Li+I Cai2l L 2 +ICb i ll L iL2A t +  IQ,i2l L 2 (l+  L 2 A t),

L 12 = I Ca i2l L 2+ ICbill L i(l+ L 2 A t)+  ICbl2l L 2 (l+ L iA t+ L 2 A t) ,

L 21 =  ICa2ll L i+ IC a9.?J L2+ ICb2ll L 2L iA t +  I Cb22l L 2 (l+ L 2 A t) ,

L 22 = I Ca22l L 2 + 1 Cb211 L i (1 +  L 2AO+ I Cb22l L2( 1 + L i +L2AO.

See Appendix 1 for additional detail. Using the relationship of Eq.(5.22), we have 

I E n+l| < I E nl + At LI yn - yn I + lxnl ,
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or

IE  n+1l < IE  n I + At L I E  n I + It nl

< [ I + At L ] IE  n I + It nl

< I [ I + At L ]n E0 1 + IE l[ I + At L ]ml I X n-m-l I

< I [ I + At L  ]n E 0 1 + C. IS X n-m-l I

< I [ I + At L ]n E0 1 + C. n. max Ix n-m-l I

< I [ I + At L ]n E0  I + C. n. tn. At k . (5.23)

In dynamic problems, the local errors committed at tn are propagated to solution 

u(tn) by the feedback effect of historical terms as seen in Eq.(5.23). A description of the 

propagation and accumulation process in terms of "error influence coefficients" is presented 

in [54].

5,_4_Truncation E rro r  M easure of the Newm ark-B M ethod

To evaluate truncation error, a characteristic equation of the integration algorithm 

may be provided. A characteristic equation can be obtained if we have a time difference 

equation. Here, as a first step of evaluating the truncation error, we will derive a time 

difference equation from Eq.(5.8) by eliminating velocities and accelerations. If we use 

Eq.(5.8) again:

{yn+1} = [An] { yn } + {Ln}. (5.24)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

95

By using Eq. (5.24) repeatedly for time step n, we have

{ y n } = [ A n - l ] { y n - l }  + {Ln-l} (5.25)

Defining matrix [A1] from the nature of matrix [A] in eq. (5.24) as follows:

[A '] =  [ - 1 222, A u ] = Ja [ A ] - >

where Ja is the determinant of [A].

Resultant properties can be determined as follows:

[A'] [A] = [  -A l2 ] [  A ll  A ,2 ]  .  J a [a ] .1[a]

r  A 11A2 2 -A 12A21 0  I
L 0  A 11A2 2 -A12A2 1 J

and

[A1] + [A] = [ A n + o A 2 2  A i 1+° a 2 2 ]

As we can see, both resulting matrices are diagonalized.

Premultiplying Eq. (5.25) by [An'], we have

[An']{yn} = [An,][An_1] { yn- 1 ) + [An,]{Ln-l}. (5.26)

Substituting Eq.(5.25) to Eq.(5.24), we have

{yn+1M  [An']+[An] ){ y" }+[An’][An-l]{yn-l} -{Ln} + [An1] {Ln-1} = 0. (5.27)

Eq. (5.27) is called two-step time difference equation of the Newmark-P method. If [An]

has the same property as [An_1], the difference equation can be decomposed into two 

independent equations for displacement and velocities as follows:

un+ l. Aid un + A2d un‘l-L in + A22nL in - 1 - A i2nL2n - 1 =0, (5.28.a)
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vn+l - A 1v vn + A2v v" - 1 -L2n - A2 inL in-! - A i =0,  (5.28.b)

where v denotes u, and

A id= (A n n+A22n' ), A iv= (A n n'+A22n ),

A2d= (A n nA22n’ - A i2 nA 2in' ), A2v= (A n n'A22n - A i2n A2111 ).

The error committed in each time step by replacing the differential equation Eq.(5.7) by the 

difference equations Eq. (5.28.a) and (5.28.b) are called local the truncation errors for 

displacement and velocity, respectively.

5.4.1 Evaluation of Truncation Error

There are ways to evaluate the truncation error committed in each time step. From 

Eq.(5.27) and (5.28), the local truncation errors for the velocity and the displacement are 

defined by:

(At)2Tdn = un+1 - A id un + A2  d un'l  - Li" + A22nLln "1 - A i2nL2n ' 1 (5.29.a) 

(At) %vn = vn+1 - A iv vn + A2  d v" - 1 - L2n - A2 inL in ' 1 + A i^ L 0-1 (5.29.b)

To rewrite the last three terms of Eq.(5.29), the following properties are defined:

Ei = - D12, E2 = A22D12-A12D22, E3 = A22D11-A12D2,

E4 = - D22, E5 = A11D22-A21D12-D2I, Eg= A11D21-A21D11.

Eq. (5.27) can be represented as follows;
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(At)2̂ " = dn+ 1 - Aid dn+A2d dn'1 + EiFn+1 + E2Fn + E3F11- 1 (5.30.a)

(At) Tvn = vn+ 1  - A iv vn+A2v v" - 1 + E4Fn+1 + E5pn + E6Fn-* (5.30.b)

By the first method, which was shown in Hilber[51], the truncation error can be 

expressed using Taylor's series. Assuming u(t) to be continuously differentiable up to any 

required order, all terms in Eq.(5.30) can be expanded into a finite Taylor series at t. Also, 

in Eq.(5.30), it is assumed that the time step size is not changed from the (n)th step to the

(n+l)th step so that [An] = [A11*1]. Then, Ai = A id = A iv, A2 = A2d = A2V. Using the

differential equation of motion, the truncation errors for the displacement and velocity can 

be expressed as[see Appendix 1]:

t d = [Q-2T0 -T2  +Q2T4 ]co2u + [Q_1Ti-QT3]cou

+ [ (T2-Q2T4)F + T3(—)F + T4  ( - ) 2F ]
C0  0)

+ [ Qo(—)_1F + Q l(- )F  + Q2 (—)2F] + 0 (At 3), (5.31)
CO CO to

and

Tv = [-Ti +Q2T3]co2u + [Q'^o-QT^coii

+ [ Ti F  + T2( - )F  + T 3 ( - ) 2F ]  
co co

+ [ R0(—)-!F + R i(- )F  + R2  ( - ) 2F ] + 0(At 3), (5.32)
to CO CO

where

T0 = 1 - A i + A 2  , Tj = ( 1+ ( -1)*A2 ) / / !  ,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Q 0 = E i + E 2 + E 3 ,  Qi=  (Bi  + ( -1 ) j B3 ) /*'!  ,

Ro = B4  + B5 + Bg , Rj = ( B4  + (-1)* Bg )/ l!,

and the circular sampling frequency Q = 0) At . Also, u and F denote un and Fn, 

respectively.

5.4.2 New Improved Definition of Truncation Error

The computation method of the truncation error using Taylor's series is easily 

applicable to the homogeneous equation of free vibration, however difficulties arise when 

trying to extend this method to the forced vibration case. For the forced response system, 

we have assumed a precisely defined forcing function with continuous first and second 

time derivatives. In practice, forcing functions consist of experimentally observed loads at 

discrete time intervals, therefore the computation of the required derivatives is not always 

possible. To resolve such difficulties and reduce unnecessary computation even when it is 

possible to determine force at every time step, a new approach is presented. This new 

method to evaluate truncation error, is relatively simple when it is compared to the initial 

one. Practically, the truncation errors for displacements and velocities committed in each 

time step, can be evaluated by using the remainder terms defined in Eq. (5.5).

Using the difference equation(5.24) including the remainder terms, after elimination 

of acceleration terms, the numerical solution of the system can be recast in the form of the 

matrix equation:

{yn+l} = [A”] { yn } + { Ln} + [A i"]'1! Rn }. (5.33)

Now we define truncation of the system as:
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{ S n) = [ A 1n ] - l { R n } ,

or
V'

Sd

Sv

l+2A t Y^to -2A t 2 |3^0) 2 

-Atyco2  l + A t 2 Pco2.

(p- ^)At 3 u(3)(Q 

(y- ^)At 2 u(3)(Q
(5.34)

where

J=l+ At 2 pco2.

If there is no force term, then, Eq. (5.31) will be represented as following form:

{yn+i} = [An] { yn } + { sn}. (5.35)

Using a method similar to that used in obtaining the two-step difference equation of 

Eq.(5.27) and (5.28), following equation can be obtained:

{yn+i}. ( [A'n]+[An] ){ yn }+ [A'n][An‘l ] {yn_*}-{Sn} + [A’n]{Sn-1}= 0. (5.36)

From the relationship between the displacement in the two-step method and the terms 

consisting of the remainder as seen in Eq.(5.36), the truncation error for displacement and 

velocity can be defined. Thus, we define the truncation error as follows:

{x n} = {Sn} - [A'nJtSn-1}

= [Ain]-l{Rn} - [A'n][Ain-1]-1 {Rn-1}

= [Ain]'l{R n} - [D]{Rn_1} . (5.37)

In Eq.(5.37), since the term of [D)=[A'n][Ain ‘ 1] ' 1 = Ja  [An]’1[Ain"1] '1, in which Ja  is the 

determinant of [A], and [A11] ' 1 = ( [Ain]‘1[A2 n] ) -1 = [A2n] '1[Ain], the [D] matrix can be 

rewritten as follows:
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[D] = JA [A2n]"1[Ain][Ain' 1] '1.

If we assume that [Ain] is equal to [Ain_1], then: 

P I  = J a [ A 2] - 1

= JA 
TA2

1 -A t

-A t (1-7) 1- ^ - ( l - 2 p ) c o 2

At^ 0)2
where JA 2  = 1+“ V ^  (2 p-2 y+l).

The advantage of the second method is that is simpler and more compact in view of 

the expression used to compute the truncation error than the one expressed in Eq. (5.31) 

and (5.32). This expression can be easily applied to evaluating the truncation error 

committed in each time step in a forced response system as well as in a free response

system that is to be solved. Also, for the case of a variable step algorithm, the second

method is more advantageous in evaluating truncation error committed through the 

transition time frame from a stage of a fixed time step to a stage of a time step other than 

that used in the previous time step.

From Eq.(5.37), when the system is undamped and the free parameters Pand y are 

selected as j  and j  respectively, the expression for the truncation error for the

displacement is simplified in following form:

Tdn = j ^ W - R d 11-1)

1 . h3 (3) h3 (3) V ,r
Ja  12 Un 12 Un_1 (5.38)

where Rdis the remainder term as defined in Eq.(5.4) and JA is the determinant of the 

matrix A.
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5.4.2 Current Mode and Current Frequency

In the previous section, an investigation of evaluating the truncation error measure 

has been presented only for the single-degree-of-freedom system, which is analogous to 

the uncoupled equations obtained by conventional mode decomposition. In order to extend 

this evaluation technique to the multi-degree-of-freedom system, further investigation of the 

characteristics of the structural dynamics of multi-degree of freedom system is required.

As seen in Eq.(5.37), for every time step, we need to evaluate the amplification 

matrix [A], and other related properties which include the modal frequency at each 

decoupled equation. The modal frequencies and vectors are obtained after the eigenvalue 

analysis of the structural problem is solved. If the order of the matrices is large, the 

computer time required to solve all eigenvalues and vectors are enormous. The analysis of 

the eigenvalue problem may be the most time consuming phase in most cases of structural 

dynamic problems including the direct time integration procedure. It is even tedious to 

extract the lower modes of the system which dominates the response in most structural 

dynamic analyses. Thus, there should be a measure of frequency, which is sufficiently 

accurate to approximate at each integration time step.

The Rayleigh quotient is a well-known method for computing eigenvalues when the 

corresponding eigenvectors are known [47,78], The method is particularly useful in 

eigenvalue computation by means of vector iterations. A similar type of expression may 

also be used for finding a current, characteristic frequency in step-by-step dynamic 

response analysis. This is given by:

mk2 = A»k - K „  Auk _ ( 5  39)

Auk 1 M Auk
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Kk is the tangent stiffness for step k. The mass matrix is normally constant, ©k is the 

current, characteristic angular frequency. This frequency is generally not any particular 

eigenfrequency, but it reflects rather the incremental response from all eigenmodes. This 

may be seen from writing the incremental solution vector as 

m
Auk = £  A Y i k O i  . (5.40)

i=0

Yi(t) is the response function for eigenvector <E>i, and m is the total number of eigenvectors.

Then, because of the orthogonality properties of the eigenvectors,

m m
£  AYik2 ®itKk®i X  AYit2 K ik

------------------------- ^ ---------------  . (5.41)m m
£  AYik2 <X>itM<X>i £  AYik2Mi
i= 0  i=0

Ki and Mi are the generalized stiffness and mass for eigenvectors i. Thus, Eq.(5.56) shows 

the modal composition of the current frequency.

A corresponding measure for a current, characteristic period may be found

Tk = ; 2 ”  ■ (5.42)
I ©k2  I 1 /2

It is worth noting that the current period changes with time for a stationary response 

as well as for a nonstationary response of multi-degree-of-freedom systems. Tk is tied to 

the current stiffness and response.
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5.5. Automatic Time Step Selection

In the preceding section, we have discussed the essence of a direct time integration 

and how the truncation error can be measured. Those studies are carried out based on a 

decoupled equation system. However, when we extend these idea to the multi-degree-of- 

freedom system and, other large scale system with finite elements, some additional 

considerations are required to obtain reasonably accurate solutions, where the exact 

solution is generally not obtained. Thus, we will discuss in detail about strategies of time 

step size selection, and its implementation to the practical structural problems.

As marked before, the truncation error has been most widely used for an error 

measure to adjust the time step size. However, it still remains an expensive method since 

time step adjustment based on the truncation error is appropriate for high accuracy 

requirements. Also, the computation of error bound resulted in substantial additional cost. 

In typical structural dynamic analysis, much lower accuracy is often satisfactory due to 

analysis cost. Thus, it is desirable to have a cost-effective and reliable algorithm which 

provides reasonably accurate solution.

There are several major factors that affect the efficiency of a variable step integration 

procedure: the basic integration formula which dictates stability and accuracy for a fixed 

time step integration; the step-size control strategy to satisfy a specified error bound at the 

same time to avoid instability. In practice, it is often desirable to select the step size to be as 

large as possible, consistent with a specified local error. This can be accomplished with an 

adaptation of the difference formula to a variable step integration procedure.
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5.5.1 Norm of Truncation Error Measure

Since we have considered the truncation error as an error measure for each 

component i , a proper local error measurement at each time step for the integration 

procedure is required to evaluate system-wise errors. A detailed component-by-component 

calculation of e(tn) is seldom useful( or even possible). All that is needed for practical 

applications is a rough estimate of relative error II e 11/  II u II, or II e 11/  h, given the local level 

of accuracy required and some problem-identification parameters.

In most explicit algorithms, it is reasonable to take the maximum among them,

viz...

en+1 = max { 1^ 1 , 1^ 1,.. 1 ^ 1  }

However, it is noted that error norms of /-type

(5.43)

have been proved to be suitable for implicit formulas, where h denotes the time step. In this 

case the relative error norm is defined by:

e"+l = 11^11. (5.44)

Let us define:

then we have

(5.45)

For a fixed error bound emax» Eq. (5.61) allows us to define:
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(5.46)

Another measure, we can define other than Eq.(5.45), is an energy norm of 

truncation error. As done to obtain the current frequency, we define the energy norm as 

follow:

The energy norm defined by Eq.(5.47) is not actually involved in the time adjusting 

algorithm, but is used as an indicator of the algorithm's performance.

In adjusting the time step, as a practical matter, it is too ambitious to use Eq.(5.46) 

since we do not want to have many rejections, and aiming at equality with the maximum 

local error permissible will cause frequent overshoot. The drawback of expression 

Eq.(5.46) is that it implies, as a rule, that the step length will be changed every time. As 

discussed earlier, this is not desirable, in particular when solving a linear problem. Too 

frequent and too dramatic changes of the time step may also tend to destabilize the 

algorithm and possibly distort the energy balance. It is therefore desirable to introduce a 

type of smoothing or breaking mechanism.

Let the current time step ratio £ be defined by:

where f(Q  is a tuning function that determines the sensitivity of the time stepping 

algorithm.

Ex =XvT MXv + XdT KXd. (5.47)

C — log( 1 /  £max hn-l). (5.48)

The actual setting of new time step is now determined by:

hn = f(C )h n-i, (5.49)
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Fig. 5.2 shows some examples of such tuning functions. In the first case f(£) is 

simply proportional to the step-ratio £ ,  which means that the new time step is given by Eq. 

(5.49). This implies that the step length will be adjusted for every time step. Such a tuning 

function should only be used in nonlinear analysis in which the stiffness is recomputed for 

every time step. Second tuning function is a simple step function which either doubles or 

divides the step in half. Using this tuning function the step length is not changed unless a 

major change in the response has taken place. After adjusting new time step based on the 

procedure as stated above, the new time step is examined to meet the local error tolerance. 

If the estimated local error based on the new time step does meet the test, we accept the 

solution and continue the computation. Arguing as previously, following strategy for 

automatic time selection can be suggested.
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c

Fig. 5.2 Time Step Tuning Functions
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5.5.2 Automatic Time Selection Strategies

Rule 1. If lestl > e, reject solution and recompute it with a new step size. If lestl < emax, 

accept the solution and use a new step size for the next step. In either case use the 

expression as shown in Eq.(5.49) for obtaining a new step size.

Some limits on the step size h are necessary. An algorithm may reduce its time step 

to be very small near a point where the solution has some kind of discontinuity. In most 

cases, the code successfully continues the integration and does not consume too much time. 

For this reason, we have counted function evaluation in this algorithm to provide a measure 

of computational effort, rather than to request user to supply a minimum and maximum 

time step size. In this algorithm, a maximum and minimum step size are determined by a 

initial step size supplied by user. Also, the actual minimum and maximum, or an average 

time step is evaluated while the integration is proceeding.

Rule 2. The step size is not permitted to be larger than a maximum step size. Some limits 

on the change in step size are of practical importance. A very large change can mean that 

the approximation valid for "small" h is breaking down. Another important consideration is 

that of "chattering" in the step size.

Rule 3. The step size is not permitted to increase by more than a factor of 4 or decrease by 

more than a factor of 1/5.

In summary, a desired local accuracy e per unit change in time and initial step size 

is required. This algorithm estimates the local accuracy and tries to use a step as large as is 

compatible with the error requirement.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

109

5.5.3 Effect of Step Change on Local Stability

The most typical, and therefore most important, case in structural dynamics is 

"underdamping". We will establish appropriate measure which fully characterize the 

accuracy of the variable time integration algorithm. To carry out this development, we shall 

begin with some considerations of variable step algorithm for the discrete case.

From Eq.(5.24) and Eq.(5.25),

{yn+ i} = [A]n { yn } + { Ln } ,

and

{yn}=[A]n-Myn-M + {Ln-M ,

for time step at n+ 1  and n.

The appropriate eigenvalue problem is obtained by taking 

{yn+1} = X{ yn } ,

which is substituted into Eq.(5.38) without considering the force term to yield:

( [A] -  X,[I] ){yn} = 0 .  (5.50)

Equation (5.50) has a nontrivial solution only if: 

det I [A] -  X,[I] | = 0 ,  

and another eigenvalue problem for the Newmark-f) method in the following form:

( A2 - A, ( [An,]+[An] ) + [An'][An-l] ) {y"-l} = 0  , (5.51)

which is called an quadratic eigenvalue problem.
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However, in the case of variable time step algorithms above, the solution is no 

longer valid since the step size, hn, from tn is different from hn_1. Now, we use:

{yn} = A,n{ yn-l } ,

and

{yn+l } = Xn+1{ y" } = *n+l ^n{ yn-l } . (5 .5 2 )

Substituting Eq.(5.52) into Eq.(5.27), one finds the following eigenvalue problem of

variable time step algorithm for the Newmark-P method:

( A.n+lXn - X,n ( [An']+[An] + [An'][An"l] ) {yn-l} = 0 . (5.53)

In most cases of underdamped systems, the solution of the eigenvalue problem of 

(5.53) has the following form:

X.1, 2 = exp ( ±i  Q d )

= e "£■ — ( cos Q d ±  i sin d )» (5.54)

where Q  = <2 At and Q.  d = (1- )1//2Q, and

log e —

 ̂ = fl[

log e
= ------------------ , and (5.55)

fa) At

Q d  = arg ( ^ 1, 2 )•
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Local stability in the present situation is concerned with the rate of growth or decay 

of powers of the amplification matrix. To prove the convergence theorem, we will need to 

show that:

IIAII <const., for any n. (5.56)

It turns out that this requirement is guaranteed if the following conditions are satisfied:

(i) p ( A )< l , a n d

(ii) Eigenvalues of A of multiplicity grater than one, are strictly less than one 

in modulus.

To compute the spectral density, p, the eigenvalues solved from Eq.(5.55) can used

as:

p(A) = max( , %2 )• (5.57)

A matrix A satisfying (i) and (ii) is said to be spectrally stable.

The effects of step change on local stability can now be evaluated from Eq.(5.57) 

by requiring that:

IW <_1.0 (5.58)

in order for Eq.(5.54) to give bounded solution.

Based on the rules and procedures stated above, we can summarize the algorithm 

for adjusting the time step-size as shown in Fig.5.3.
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imode - itol

h  new > h  max 
h  new < h  min

h new = h old

h = h new for next time

Compute esimate error

Compute desired step by (5.49)

Set
h  max, h  min, Z min, Z max

Compute £ by Eq(5.48 )

Compute optimum step by 
Eq(5.46)

Evaluate tunning level

Fig. 5.3 Variable Time Adjusting Process
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5.6. Numerical Examples

5.6.1 Example 1 (Simple Spring-Mass System)

The numerical study consists of a single-degree-of-ffeedom system. The system is 

modeled with non-zero damping subjected to an initial non-zero displacement and velocity 

excitation.

The study of this single-degree-of freedom system lies mainly in observing the 

truncation error computed using the method developed in this work with the one obtained 

from Taylor's expansion. A second objective is to investigate how the time-step adjusting 

algorithm is working with different tolerance descriptions to the truncation error.

The system is solved with the computer program T1D using the automatic time 

stepping algorithm outlined in previous section. For the first test purpose, the system is 

solved with time step size of 0.001 seconds under the initial condition described below. In 

this case, the variations of the indicator of truncation error are obtained. For the second test 

purpose, investigations are carried out for values of different tolerance of maximum 

allowable local error, emax and initial time step h0  equal to 0.001. The values of maximum 

allowable truncation error are 0.5E-3, 0.1E-3, and 0.5E-4, respectively. The step length 

hmax is set to equal to 5 times of initial time step.

The pertinent system parameters corresponding to the equations (5.1)-(5.2) are

M =lkg, C=0,

K -  MoP = (lOOrc) 2  kg/sec2, and
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do=0, v0=7C, F(t)=0, t > 0.

Parameter values for the integration algorithms are

For the first test objective, the problem is solved with no time-step adjustment 

applied. The solution is compared with the exact solution. The solution error at each time, 

i.e., the total truncation error, is shown in Fig. 5.4. Computed truncation errors obtained 

using two methods are both identical as seen in Fig. 5.5. In this figure, it is seen that 

amplitude of truncation error using the error indicator defined is a half of the conventional 

form of error indicator defined using Taylor's expansion technique since the amount of 

error using Taylor's expansion is actually computed over a two time-step interval. 

However, the error indicator seems to be well defined and can be used for the error 

analysis of the time integration algorithm.

In the second test case, computations are carried out for three different maximum 

allowable truncation errors. The response for the case of fixed time step is shown in Fig.

5.6. Variation of the time step is shown in Fig.5.7. The initial step-length was set to 0.001 

and is equivalent of 20% of the fundamental period. Fig.5.7 shows that the time-step 

changes rapidly over the whole time history even though the system is linear and the 

loading condition is linear and constant. This proves that the algorithm is sensitive to the 

change of displacement and velocity of system response since the algorithm is based on the 

truncation error which is combination of displacement and velocity. In this example, it is 

recognized that the local truncation error is controlled as time step changes. In the first test 

case with tolerance o f 0.0005, the average time step size 0.45E-3, which is 45% of the 

initial step length( 9% of fundamental period). In this case, it is observed that the maximum 

amount of local truncation error is reduced to 4% of the one with fixed time step size of 

0.001 as shown in Fig. 5.8.
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Fig. 5.9 shows that time step adjusting algorithm also reduces the total global error. 

The total error, which is measured after 0.1 seconds elapsed, reduced to 6.0E-4 and is of 

24% of the one with the fixed time step. It is noted that time adjusting algorithm can not 

influence the total amount o f global error directly, however the error propagation 

contributed by the truncation error can be controlled.

5.6.2 Example 2 ( Spring-Mass System of two-degree-of freedom)

The previous model of a single-degree-ffeedom system has been investigated 

mainly to examine the accuracy and the effectiveness of the algorithm. It is important to 

extend the algorithm to more than one-degree-of-freedom systems for the purpose of 

further implementation of the algorithm to a finite element analysis. Prior to implementing 

the algorithm into the finite element method for practical purposes, a simple two-degree-of- 

freedom system can be selected for observing the characteristic of the algorithm and its the 

parameter involved when a multi-degree-of-freedom system is solved.

NSJ kl ______  k2   kl tvs
ml A /W M A / m2 /V H V N S  

x l x2
Mi=M2 =lkg, C=0

K i  = M op  = (1007t)2 kg/sec2, K2 = j K i

Fig. 5.10 Example of Two Degree of Freedom System
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The system is selected as shown in Fig.5.10. This two-degree-of-freedom system 

consists of two masses, and three springs and one damper. The system is solved and tested 

under several excitation conditions.

Three test cases are carried out for values of different maximum error tolerance £max 

and initial time step ho equal to 0.001. The step length hmax is set to be equal to 5 times the 

initial time step the same as in the previous case.

The system parameters are:

dl(0 )=0 , v i(0 )=0 , d2 (0 )=0 , v2 (0 )=0 ,

Fn
Fi(t)=FQ sin(Det, F2(^)z=-^-sin(oet, t > 0,

and parameter values for the integration algorithms are:

= !  •

The exact solution of the above system can be obtained through the mode 

superposition technique. The system equation is given as follows:

[ M ] { u } + [ K ]  { u } = { F }, (5e.l)

where

m02  ] •

r„i _  r  k l + k 2  _ k 2  1  [K] -  L - k 2  ki+k2  J  •

After solving the eigenvalue problem for this system, both eigenvalues and 

eigenvectors are obtained as:

1 1
[ ® ] = [ l - l ]  and, [A ] =

*,1 0 (5e.2)
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k 2 kwhere X-i = — and X2 -  — , respectively. Then, substituting {u} = [ O ] {q} into 

Eq.(5e.l), and premultiplying by [<b]T, we obtain:

[d>]T[ M ] [ d ) ] { q }  + [<D]T[ K ] [d>]{ q } = [®]T{ F }. (5e.3)

From the orthogonality condition of eigenvectors, we obtain decoupled equation of 

Eq.(5e.2) in terms of:

{ q }  + [A]{q}=[0>]T{F}.

After solving the above equation and using the relationship of {u} = [ O ] {q}, we 

obtain the exact solution, under initial conditions of ui=U2 = 0  and ui=U2  =0 , as follows:

ui = (Ai + A2 )sin ©et + aisin ©it + 012 sin ©it + Pi cos ©it +P2 cos ©2t ,

and

U2 = (Ai - A2 )sin ©et + aisin ©it - a 2 sin ©it + pi cos ©it - P2COS ©2t , (5e.4)

where

Ai 0.25fo
© l2 - © e 2  ’

A2 =
0.75fo

©2 2  - ©e2  ’

cq=  - —  , a 2 =  - —  an d p i= p 2 = 0 . 
© l ©2

The time history of displacement of at the first node is shown in Fig. 5.11. The 

responses are identical for the two cases. The variation of total error is shown in Fig. 5.12. 

The variation of the time step are shown in Fig. 5.13. In the second test case, the average
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step-length is 1.6E-4 second which is of 32% of the initial step size. In this case, the 

average of energy norm of truncation error reduced to 2  % of the one with fixed time step 

as seen in Fig. 5.15.

The energy norm of the truncation error defined by Eq.(5.47) itself may not 

provide anything but it does give some indication for adjusting time step since the 

expression of energy norm is an function of time step. However, the current frequency or 

the energy norm of the truncation error can give indication o f the accuracy and predict the 

dynamic system characteristics as well. Fig. 5.14 shows the variation of current frequency, 

which represents the instaneous characteristic frequency of the system. Since system has 

two natural frequencies, 314 rad/sec and 444 rad/sec, respectively, and its corresponding 

modes of vibration, the current frequencies during integration are between these natural 

frequencies. As shown in Fig. 5.14, the current frequencies computed with time 

adjustment process are shown to be more accurate in the response region of first mode of 

314 rad/sec than the frequencies computed without step adjustment process.

However, stability problems may arise in the step adjustment process due to abrupt 

change in time step size. In some test cases of the problem, such an instability is 

experienced. In Fig. 5.16, the variations of damped frequency are obtained and are shown 

for two different cases. In the first case under an allowable error of 0.005, the adjustment 

algorithm allowed the time step size to change frequently as seen in Fig. 5.13 while such a 

rapid change under an allowable error of 0.0005 is not shown during the time elapsed 

except at the initial stage. As a result, it is shown that the numerically damped current 

frequency possess some periodic noise, which contributes observed error, in the case of 

0.005 error bound as seen in Fig. 5.16. Also, it is shown that magnitudes of spectral 

radius, a more accurate definition for stability measure, exceed stability limit, which 

should not be more than one for stable condition. Thus, in such case, more careful 

treatment is needed to avoid the instability.
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Fig.5.12 Variation of Total Error in Response of Two 
Degree of Freedom System of Example 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

123

5.0e-4

test case # 1  
test case # 2  

test case #3
o©co

3.0e-4-

2.08-4 -

1.0e-4
0 .0 40.01 0.02 0.030.00 0 .0 5

(sec)
Fig. 5.13 Variation of Time Step in Solving Time Response 

of Two Degree of Freedom System of Example 2

500

400 -

8  3 0 0 -
■o
2
>.oc03 200  -

without timo stop adjustment 

with timo step adjustment of case #2
IL.

100 -

0.01 0.02 0 .03 0 .040.00 0.05
(sec)

Fig.5.14 Variation of Current Frequency o f Two 
Degree of Freedom System of Example 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

124

1

without variable time step

.1

>» ni o> *UI

.001

with Variable Time Step of Case #2

.0001
0.00 0.01 0.02 0.03 0 .04 0.05

(sec)

Fig. 5.15 Variation of Energy Norm of Truncation Error 
Two Degree of Freedom System of Example 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

0.00 0.01 0.02 0.03 0 .04  0.05
time

Fig.5.16 Variation of Damped Frequency of Two Degree of 
Freedom System of Example 2

M3
•o
E

1.02

1.01 -

E

I
"  1.00

0.99'
0.00

case #1 

case #3

i L iL J II il
i |  ' |  i |  |  r

— i— ■—  i— i— i—  ------- i----- 1—
0.01 0.02 0 .03  0 .04  0.05

(sec)
Fig. 5.17 Variation of Spectral Radius for Newmark -beta Method 

with Step Adjusting Algorithm for solving Example 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

126

5.6.3 Example 3 ( Simply Supported Beam modeled with 3-D HEXA8  Finite Elements)

Based on the previous two examples, which are investigated mainly for examining 

the accuracy and the effectiveness of the algorithm, the algorithm is implemented to analyze 

the finite element model.

A simply supported beam is modeled by eight equally spaced 8 -node 3-D finite 

elements over the half o f its length. The beam is excited in the transverse motion with a 

harmonic point load acting at the mid point The period of fundamental mode is 1 second. 

The harmonic forcing function starts with zero intensity. Damping is introduced 

proportional to the mass and the stiffness with proportional factors adapted to 1 0  percent of 

the critical value of the first and third modes of vibration. The beam is excited with load 

frequency equal to the third eigenfrequency. By treating this beam as an Euler beam, 

eigenffequencies of the system can be found follows:

coi = 6.29 rad/sec and © 3  = 56.66 rad/sec

The pertinent system parameters corresponding to the system are:

E = 2.1E11 N/m2, p = 70 kg/m, v = 0.3, L  = 24m, I = 4.48E-5 m4,

P0  = 450 N,

and parameter values for the integration algorithms are

The system is solved and tested under several analysis conditions. Test conditions 

are given for the maximum allowable norm of truncation error, 1.0E-4, 5.0E-5, 1.0E-5, 

and 5.0E-6, respectively.
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Four test cases are carried out for values of initial time step h0  equal to 0.001. The 

maximum and minimum step length, hmax and hmin are set to equal to 5 times and 0.2 of 

initial time step, respectively, same as previous model.

When it can be assumed that damping is proportional, we can write:

<j>i T C <J)j = 2 ©i 8  ij, (5.59)

where £j is a modal damping parameter and Sy is the Kronecker delta.

Damping effects can readily be taken into account in mode superposition analysis 

provided that Eq.(5.59) is satisfied. However, assuming that it would be numerically more 

effective to use a direct step-by-step time integration scheme and that realistic damping 

ratios are known. In that case, it is necessary to evaluate the matrix C explicitly, which 

yields the established damping ratios i j i , when C is substituted into Eq.(5.59). If p=2, 

Rayleigh damping can be assumed, which is of the form:

C = aK + pM, (5.60)

where a  and P are constants to be determined from the two given damping ratios that 

correspond to unequal frequencies of vibration.

As we assumed that damping is introduced proportional to the mass and stiffness 

with factors adapted to 1 0  percent of critical of the first and third vibrations for this example 

of multiple degree of freedom system. The system has natural frequencies o f 12.5 and 56.6 

rad/sec for the first mode and the third mode, respectively. Establish the constants a  and P 

for Rayleigh damping in order that a direct time integration can be carried ou t

Using the relation in Eq.(5.59) we obtain using (5.60):

4>iT (aK  + pM ) <]>j = 2 CDi4i8 ij,
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a  + p < » i 2  = 2 coi£i8 ij.

Using this relation for ©i, £ 1  and ©3 , £3 , we obtain two equations for a  and P : 

a  + p  ©i2 = 2 © i ^ i ,  and 

a  + P © 3  2  = 2  © 3  £3 .

The solution is a=  1.123, and P = 0.00318. Thus the damping matrix to be used is

C = 1.123 K  + 0.00318 M.

The time history of displacement is shown in Fig. 5.18. The responses are 

identical for the four different test cases. Variations of the time step for each test cases are 

shown in Fig.5.19.

Fig. 5.20 shows the variation of current frequency, which represents the instaneous 

characteristic frequency of the system at each time step. Since system has infinitely many 

natural frequencies, starting from 6.29 rad/sec for the first modes, and its corresponding 

modes of vibration, the current frequencies along the time frame also are in the range of 

these natural frequencies. However, Fig. 5.20 shows that the range of the current 

frequencies are finite distributed because of the excitation frequency being equal to the third 

eigenfrequency. As shown in Fig.5.20, the current frequencies computed with the time 

adjustment process are shown to be more accurate in the response region of first mode of 

6.29 rad/sec than the frequencies computed without the time step adjustment process.

In Fig. 5.20, it is shown that the enegy norm of the local truncation error may be 

controlled effectively. The energy norm of the truncation error for each test cases are 

confined in some range of tolerance which is given and controlled within the program.
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Fig. 5.20 Variation of Current Frequency of Simply 
Supported Beam(Example 3)
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Fig.5.21 Variation of Energy Norm of Truncation Error in 
Response of Simply Supported Beam of Example 3
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Fig. 5.22 Variation of Spectral Radius for Newmark-beta Method 
with Step Adjusting Algorithm for Solving Example 3
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As in previous problem, even with dampings, some stability problems were 

encountered. In Fig. 5.22, it is shown that magnitudes o f the spectral radius are ranged 

between 0.85 and 1.05, exceed the stability limit at some time, which should not be more 

than one for stability.

5.7 C onclusion

In most applications of implicit methods to problems of structural dynamics, past 

research indicates that quite large time steps can be used and will provide reasonable 

accuracy in the solution when the solution o f lower modes are of prime concern. However, 

since most of the numerical studies show a steady and rapidly increasing growth of error as 

the time step increases, the accuracy requirements suggest that it is important to consider 

the control of error in the time matching schemes, as well as the appropriate selection of the 

method of control of the time step size. Thus, an algorithm is needed which can calculate 

optimum time step in a automatic fashion during the solution process.

The basis for such algorithm should be error control, computational efficiency, and 

convenience of implementation. There are two major factors that effect the efficiency of a 

variable step integration procedure: the basic integration formula which dictates stability and 

accuracy for fixed time step integration and the step-size control strategy used to satisfy a 

specified error bound and at the same time to avoid instability.

The method which is described in this paper has many similarities with the 

technique of step selection previously developed which are shown in the literature. To 

control error, the truncation error is the first candidate as a measure. However, a cost-
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effective method is required in order to provide a relatively cheap and reliable solution, 

such as improving the effectiveness of traditional stepsize change technique using the 

truncation error measure.

As a first attempt, the measure for evaluating the truncation error committed during 

the process of time integration in each time step is newly defined. To evaluate the 

truncation error, we have assumed a precisely defined twice differentiable forcing function 

for evaluating the truncation error for the forced response system. In practice, forcing 

functions consist of experimentally observed loads at discrete time intervals, therefore the 

computation of the required derivatives is not always possible. To resolve such difficulties 

and reduce unnecessary computation even when it is possible to determine force and its 

derivations at every time step, a new approach is presented in this chapter.

The second attempt is made to implement this method to the multi-degree-freedom 

system. Since the previous development is made on a single decoupled equation based on 

modal decomposition, such properties must be considered systemwise using mode 

superposition. It is tedious to extract several lower modes from the system, in which these 

lower modes seem to dominate the structural response. Thus, an approximate measure of 

frequency is needed to represent the system reasonably in the range of interesting 

frequencies. The current frequency, which derived from Rayleigh Quotient, is introduced 

in evaluating the evolution matrix for time integration. Employment of this current 

frequency provides very accurate measure for the truncation error, and saves the 

computation time required to evaluate the error at each time step.

In all examples solved, it is shown that the local truncation error might be 

effectively controlled. The truncation error norms for each example were confined and 

controlled within some range of a  given tolerance. Also, it is recognized that substantial 

time saving was attained by using the variable time stepping algorithm developed.
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In the example of two-degree-of-freedom system, which has two natural 

frequencies, 314 rad/sec and 444 rad/sec respectively, the current frequencies along the 

time frame ranged between these natural frequencies. The current frequencies computed 

with time adjustment process are shown to be more accurate in the response region of the 

first mode of 314 rad/sec than the frequencies computed without the time step adjustment 

process.

In the beam problem, it is shown that the current frequency which represents the 

instaneous characteristic frequency of the system ranged between 6.29 Hz and 60 Hz. This 

revealed that the current frequencies computed with time adjustment process are more 

accurate in the response region of the first mode of 6.29 rad/sec than the frequencies 

computed without the time step adjustment process.

It is shown that the numerically damped current frequency possess some noise 

frequency, what is sometime called error. Also, it is shown that the magnitudes of the 

spectral radius, a more accurate definition for stability measure, exceed the stability limit, 

which should not be more than one for stability.

In the examples solved, some stability problems were experienced with the time 

stepping algorithm, even inclusion of damping. It is shown that magnitudes of the spectral 

radius sometime exceed the stability limit, which should not be more than one for stability.
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CHAPTER VI

EXPERIMENTAL MODAL ANALYSIS 
OF DIESEL ENGINE CYLINDER BLOCK

6.1 Introduction

An experimental modal analysis of a diesel engine cylinder block was performed. 

This analysis was conducted in order to obtain the dynamic characteristics of the cylinder 

block structure of the Daewoo-M.A.N. D0846HM diesel engine.

The objective of the experimental modal analysis, or modal testing, was to 

determine the modal parameters, which consist of the modal frequencies, the modal 

damping, and the mode shapes. Modal analysis requires a thorough integration of three 

components, the theoretical basis of vibration, the accurate measurement of vibration, and 

realistic and detailed data analysis. This chapter is concerned with these major parts of the 

experimental modal analysis.

Modal analysis consists of a sequence of steps to obtain the modal parameters. The 

first step is to obtain the frequency response function, or transfer function. There are 

various types o f frequency transfer functions derivable from data. These are receptance, 

mobility, and inertance[See Appendix 2]. The second step is to extract modal parameters 

from the measured frequency response function, and to derive the analytical function from

135
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the extracted parameters. The third step is to perform curve fitting which compares the 

analytical curve with the measured frequency response function curve. If agreement is 

good, then the extracted parameters can be used to derive the mode shapes. The last step is 

to derive mode shapes, usually by means of circle fitting (Nyquist plot). Further analysis 

may be performed to obtain a mathematical model. This is derived from the modal 

parameters, and from which the structural response can be predicted under an arbitrary 

excitation. This is the procedure of modal testing. Alternatively, the mathematical model 

can be achieved directly by the FEM.

The most crucial portion of the modal analysis in this work was to accurately 

identify and discriminate between the rigid body motions and the structural modes. Since 

modal analysis has been well established over the last two decades, this chapter will deal 

with experimental issues rather than theoretical ones.

The computer aided testing system, GR2515 from GENRAD Corp., specially 

designed for modal analysis, has been used for the experiment. This system was 

programmed to store the exciter and the response signals and to produce the frequency 

response function. This system software yields the Bode diagram, and the Nyquist p lo t.

To obtain a measurable input of mechanical force energy, excitation( see Appendix 

2 for details) o f the structure was provided by an input hammer. Plastic impact tips gave 

the best frequency response in the frequency interval of interest(e.g., frequency ranges 0 - 

1000 Hz). These were mounted in the end of the hammer head. The force transducer was 

mounted between the impact tip and the hammer head to measure the impact force as a 

function of time. An accelerometer has been used throughout the experiment to measure the 

structural response.
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6.2 The Experimental Set-Up of the Cylinder Block

The block was tested on various types o f supports, which can be mathematically 

defined as boundary conditions. Through the tests, under various configurations of 

supports, it was found that the actual support conditions can greatly influence the response 

of the experimental measurement as shown in Fig.6.2b. Therefore, the experiment should 

be arranged to be minimally influenced by the supports. This can be achieved by adopting 

boundary conditions like, grounded support, simple support, or free-free support. This 

support definition should be incorporated into the the finite element model. Consequently, 

a simply supported boundary condition was adopted. Practically, in case of the complicated 

support, the frequency response function shows a number of peaks, and the peaks are 

spaced closely.

As shown in Fig. 6.2a and 6.2b, the spurious modes, and the modes of no 

interests, can be eliminated by modifying the supports. Eventually, well-separated 

frequency response functions (FRF) can be obtained as shown in Fig. 6.2b.

It is noted that if  there is no restriction in choosing the boundary condition, the free- 

free support is desirable since a better and easier analysis is realized. This may be achieved 

by suspending the object by cables or by laying it on sufficiently soft sponge-like material. 

In any method of support, the rigid body motions usually appear on the FRF plot in the 

low frequency region, and these motions must be identified through the analysis.
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6.3. Location_of Points for Measuring Response and Excitation

There are two methods to locate points for measuring the response and the 

excitation. In the first method, the response is measured in one direction at one point, while 

the excitation is applied at each point in all directions in turn. In the second method, the 

structure is excited at one point while the responses is measured at various points. 

Theoretically, these two methods produce identical results. In the experiment, the first 

method was used. The measurements were taken at 132 points in all directions. The 

measuring locations are shown in Fig.6.3.

Most of the measurement points were located on the surface of the engine block. In 

general, the response can be measured in all three directions at each point. However, at 

some points, for example, on the side wall, the response could not be measured because 

geometrical complications made it difficult to apply the impact force in y-direction. Even 

though no measurement can be made in some directions at some points, the global motion 

motion can still be determined sufficiently.

When a point for measuring and/or excitation is located at the node of a certain 

mode, that mode will not appear on the frequency response function(FRF). This means the 

amplitude for that mode will be very small and will not show on the Bode plot of FRF. 

But this FRF will show all other peaks except the peak mentioned above. Fig. 6.5a and 

6.5b are the examples of this. For this reason, more than one FRF should be analyzed 

when extracting modal parameters. For the analysis, it is desirable to obtain a point 

mobility or point inertance for FRF. Point mobility is one where the response coordinate 

and the excitation coordinate are identical. An advantage is that the point mobility is 

expected to have the highest valued residuals[see Appendix 2 for deatails]. Conversely, the
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transfer mobility is one where the response coordinate and the excitation coordinate are 

different, and will have the lowest valued residuals.

The location of the points for measuring the response should be carefully chosen to 

avoid missing modes of interests, for example, the several lowest modes which have 

greatest physical meaning. By means o f the experiment, it was found that the response 

must not be measured at the midpoint or at a quarter wave length since these points are 

nodes o f the second and the third modes. In other words, the measuring point should be 

located away from the midpoint of the testing structure. For instance, when the structure is 

nearly symmetric, and the response is measured at the midpoint, the even-numbered 

modes, such as 2nd, 4th, and 6 th mode etc., will not appear on the FRF as shown in Fig 

6.5a,and 6.5b.

In addition, there is a method to evaluate the measured FRF curve. It is useful to 

check the FRF plot quickly for point inertance and transfer inertance. In case of point 

inertance, the FRF curve should show antiresonance with zero amplitude between two 

resonances as shown in Fig. 6.5a, 6.5b. The reason is that their sum of response 

magnitude is zero since they are of equal magnitude but opposite sign at the point where 

two resonances cross. In the case of the transfer inertance, as shown in Fig. 6.4a and 6.4b, 

the FRF curve should show a round curve with some amplitude between two resonances. 

The reason is that the sum is twice, since they have same sign at the point where two 

resonances cross.

6.4 Parameter Extraction

The natural frequencies can be easily be correlated with the peaks on the FRF plot. 

However, another technique is needed to determine the damping factors and mode shapes
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from the FRF. It is noted that even if  the peaks are easily recognizable, it is not easy to 

distinguish which are the natural frequencies of the structure, since any boundary condition 

might produce rigid body motions on the FRF plot. Thus, some method must be provided 

to determine the natural frequencies from measured frequencies on the FRF plot, by 

identifying rigid body motions through the mode shape analysis.

The resonance frequencies and damping factors can be extracted with the aid of the 

GR2515 in which there are three available functions, such as the search peak(SDOF), the 

complex exponential method (time domain, MDOF), and the polynomial method (MDOF). 

In this experiment, both the search peak and the complex exponential method were used to 

extract the modal parameters.

6.4.1 Mode Shape Extraction Using the Circle Fitting Method

The major objective o f circle fitting is to derive the mode shapes. The circle plot, or 

Nyquist plot, gives information concerning mode shapes, or displacements. Then it is 

obvious that if the amplitudes at all response coordinates are obtained, the mode shapes can 

easily be drawn as shown in Fig.6 .8 . To derive the mode shapes, both the response at 

resonance and the circle fitting methods were used. However, it is known that the circle 

fitting method is more accurate than the response at resonance[87,91].

As previously discussed, the FRF contains all the information about the amplitude, 

and phase at each increment of frequency in real and imaginary domain. It is well known 

that in the vicinity of a resonance, the plot of real vs imaginary, with respect to the damping 

factor describes an the exact circle. Therefore, if the appropriate parameter is chosen for 

the type of damping model, an exact circle is produced.

In order to verify the extracted parameters obtained from curve fitting, the circle 

fitting method was used. If the extracted parameters were not good, the circle fitting gave a
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distorted circle as shown in Fig. 6.7. When the extracted parameters were good, the circle 

fitting method gave an almost exact circle as shown in Fig. 6 .8 .

In the preceding section, we have discussed the resonance frequency and the 

damping factor for one FRF. Usually, only two or three transfer functions are required to 

derive the modal parameters because they are global. However, in the case of deriving the 

mode shapes, all of the transfer functions, in this case 132, must be analyzed to obtain all 

the modal constants which produce the mode shape for each resonant frequency. In other 

words, if  five peaks are chosen for modal analysis in a frequency region, we have to 

analyze 132 x 5 = 660 transfer functions. Initially the curve fitting method was used to 

quickly determine the modal parameters then circle fitting was performed in order to get the 

refined modal constants, i.e., mode shapes.

6.4.2 Modal Constant

The modal constant is the most important parameter for determining mode shape. In 

this section, more detail concerning mode shape determination is discussed.

The modal constant can be written as:

r^jk = r^ j  r^k  • (6 .1)

where <X> are eigenvectors and r denotes r-th mode, j and k  denote an arbitrary 

measurement coordinate.

Equation (6.1) represents the modal constant for r-th mode and the transfer 

inertance(j,k). For point inertance, the equation can be written in the form of:

lAkk = r^k r®k • (6.2)
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As a result of extracting the modal parameters, the modal constant, rAjk, can be 

obtained by circle fitting. Since we know rOk from Eq. (6.2) for the point inertance, the 

eigenvector can determined as rOj = r^VrAjk- Thus, any eigenvector can be derived in 

terms as follows:

TOm  = r^ k /rAmk- (6.3)

In this procedure, the mode shape can be determined by deriving the eigenvector 

m atrix[O ]. Also, the modal constant can be used to establish the accuracy of the 

mathematical model as mentioned in the introduction. For that reason the point inertance 

has an important role, both mathematically and experimentally.

6.5 Identification of Rigid Body Motion

As shown in Fig. 6.9a, 6.9b and 6.9c, and Fig. 6.10a and 6.10b, it was found that 

there are five resonances in the frequency region of 0-1000 Hz. From THE FRF plot, rigid 

body motion should be identified and excluded in order to determine the real structural 

mode shapes of the engine block. As mentioned before, the rigid body motions are 

antifacts o f the support conditions.

Fig.6.10a represents the rotational motion about z-axis and it might be a rigid body 

motion. However, since Fig.6.10b shows quite complicated motion, a careful investigation 

is required to identify it. Even though it was eventually found that it is the second rigid 

body mode, several things must be considered. As shown in Fig. 5a, there are five 

resonances on the FRF plot. The point inertance, denoted by the sign '2X+ 2X+', can be 

seen in the right bottom comer on the plot. The first one is the response coordinate and the 

second one is the excitation coordinate. In the same manner, measurement is taken at
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'11X+', midpoint of the longitudinal length of the engine block, where the excitation and 

response coordinates are located. As shown in Fig.6.5b the FRF plot contains only three 

peaks. The other two peaks have disappeared.

As mentioned before, in the case of point mobility,(11X+, 11X+) it should pass 

through the center node of the 2 nd mode,4th mode etc., and then such modes should not 

appear on the FRF plot. For convenience, each peak is numbered as shown in Fig. 5a. 

The peak of #1 is easily defined as rigid body motion (see Fig.6.10a), therefore, it is 

obvious that peak #2 or #3 might be the fundamental mode, but in observing the Fig. 5b, 

peak #2 and #4 have disappeared, so we might deduce that peak #2 is not a fundamental 

mode because in such coordinate(l 1X+, 11X+) the even number mode like the second and 

4th modes must disappear. Eventually, we identify peak #1 as the fundamental mode and 

the second mode to be peak #4. It is assumed at this point that peak #5 might be the third 

mode. This was proved through mode shape analysis.

Thus, if  the fundamental mode is #3 peak, it is concluded that #2 peak is a rigid 

body motion. Now a question arises in viewing Fig. 6.10b. It shows a very complicated 

picture from which it is difficult to identify rigid body motion. But it seems that the 

problem comes from the closely spaced peaks(#2 and #3). In such a case it is quite 

difficult to get the precise modal parameters, which means that it is difficult to have good 

curve fitting as shown in Fig. 6 .6 b. The figure shows some disagreement between the 

measured curve and the analytic curve, consequently deviation of the parameters produces 

slightly distorted modal constants. This results in a complicated picture, but generally it 

represents rotational motion about y-axis.

In addition, there are three more reasons why #2 peak is considered as rigid body 

motion. The first is that the damping factor is too high(0.030) comparing with the structural 

damping(0.005) as shown in the conclusion section. The second is that the antiresonance
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between #2 and #3 peaks does not approach zero as shown by Fig.6.5a. If they reflect the 

structural mode, the two components at cross point must have same the magnitude, but 

with opposite signs. These sum must be zero, a conclusion based on theorem for an 

undamped or lightly damped system. The third is that #2 peak is located in the low 

frequency region, type of rigid body motion should be.

6.6 Conclusion

In this experiment, five modes have been obtained in the frequency region up to 

1000Hz. These modes consist of the fundamental, the second, and the third mode, and two 

rigid body modes. The natural frequencies and modal damping were obtained by means of 

curve fitting for both the search peak and the complex exponential methods, and the mode 

shapes were obtained by means of the circle fitting method.

Through the experiment, it was found that there are two rigid body motions which 

meet at 63 Hz, rotation in z-axis and 159Hz, rotation in y-axis. Theoretically, the 

frequencies of rigid body motions are much lower than the natural frequencies of the 

structure. The rigid body motion can be changed as the support configulation changes. The 

value of the rigid body motion itself does not have significance since our basic interest lies 

in the structural dynamic behavior of the block.

However, the rigid body motion should be minimized and further experimental 

plans developed to eliminate these motions.
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Table 6.1 Structural Modes

Mode
No.

Frequency
(H z)

Damping
Factor(%) Remark

1 199.67 0.00588 1. Bending Mode
2 430.0 0.00775 Torsional Mode
3 573.5 0.00351 2. Bending Mode

Table 6.2 Rigid Body Modes

Mode Frequency Damping Remark
No. (H z) Factor(%)

1 63.7 0.017 rotation about z-axis

2 159.2 0.031 rotation about y-axis
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(a) Initial Set-up with Four Supporting Pillar Assembly (2"dia.x 17"length)

w w i iW R r w i i i ?
(b) Modified Set-up with Supports Using Four Steel Balls(l/4"dia.), 

Attached to Each Bottom Comer of Cylinder Block.

Fig. 6.1 Experimental Set-Up of Diesel Engine Cylinder Block
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Frequency (Hz)

(a) FRF Plot Measured at the Transfer Inertance ( 8 X+ 2X +) 
for the Engine Block as Initially Set-Up.

R nqnncy (Hz)

(b) FRF Plot Measured at the Point Inertance ( 2X+ 2X +) 
for the Engine Block of Modified Set-Up.

Fig. 6.2 Comparison of Frequency Response according to 
Cylinder Block Support Configuration
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29

*15

X

70 Nodes and 132 Measurement Points in all Directions 

Fig. 6.3 Measuring Point Mesh of the Cylinder Block
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Frequency (Hz)

(a) FRF Plot with All Peaks for the Transfer Inertance(2X+ 6X+)

(b ) FRF for the Transfer Inertance(2X-11X-), Showing only Three Peaks with Two 
Peaks Missed due to theResponse Coordinate (11X-), Positioned in Center of the

Structure.

Fig. 6.4 Different Frequency Response Results According to Measuring Location
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Frequency (Hz)

(a) FRF Plot for the Point Inertance( 2X+ 2X+), Showing All Five Peaks

 7

:-9'

Frequency (Hz)

(b) FRF Plot for Point Inertance (11X+ 11X+), Showing Three Peaks with Missing Two 
Peaks due to the Coordinate (11X+), Positioned in the Middle of the Structure.

Fig. 6.5 Different Frequency Response Results According to Position for Point Inertance
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(a) The Curve Fitted Frequency Response Using Complex Exponential Method
Without Adding Residuals.

i.5IE+d2 flgftigrev

(b) The Curve Fitted Frequency Response Using Complex Exponential Method
After Adding Residuals.

Fig. 6 .6  Analytic Frequency Response Plot with Residual Effects
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Imag -3.256332-01 
final 3.256332-01 
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Fig. 6.7 Nyquist Plot for 2X+ 2X+ Coordinates, Frequency 199.67Hz, Damping 
Coefficient 0.00588, in which a Minimum of Six Points Are Needed to Plot.

430.131
0.00768

2X+
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RETURN... •

Fig. 6 .8  Nyquist Plot for 2X+ 2X+ Coordinates, Natural Frequency 430 Hz, Damping 
Coefficient 0.00768, Showing the Exact ■ Circle.
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193 HZ, XYZ. 2X

(a ) Fundamental Mode Shape at a Frequency of 199.67 Hz

(b ) The Second Mode Shape at a Frequency of 430 Hz. 

Fig. 6.9 Mode Shapes of Cylinder Block From Modal Testing
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x

573 HZ*XYZ,2X

(c) The Third Mode Shape at a Frequency of 573.5 Hz 

Fig. 6.9 Mode Shapes of Cylinder Block From Modal Testing(Continued)
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RIGID BODY S3HZ

(a ) The B rst Rigid Body M otion, Rotation about z-axis at a Frequency of 63.7 Hz.

I

169 HZ.XYZ. 2X

(b) The Second Rigid Body Motion, Rotation about y-axis at a Frequency of 159 Hz. 

Fig. 6.10 Rigid Body Motions of Cylinder Block from Modal Testing
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CHAPTER VH

CONCLUDING REMARKS

Analytical and experimental investigations of a diesel engine cylinder block have been 

performed. As market needs change, it is increasingly necessary for the engine industry to 

reduce analysis costs in the process of designing an engine, and to integrate various analysis 

procedures. To reduce the time and the cost for analysis and simulation of a particular 

design, a simpler finite element modeling technique using only 8  node solid elements for both 

dynamic and static analyses has been developed. Based on this integrated modeling technique 

o f finite elements, eigenvalues are calculated and compared with the experimental data 

obtained from modal testing of an actual engine cylinder block.

In chapter 2, in order to improve the computational efficiency as well as accuracy for 

bending dominated problems, the newly developed directional reduced integration (DRI) 

technique is extended to dynamic problems and applied to formulate element stiffness 

matrices. For problems in which out-of-plane motion is of prime importance, like cylinder 

block vibration, 8 -node elements have not provided an accurate solution of the eigenvalue 

problem due to their over-estimation of bending stiffness. Results using this new 

formulation are compared with results obtained using traditional beam and plate elements.

In chapter 3, results are given for finite element modelling and analysis performed on 

a diesel engine cylinder block. According to the eigenvalue analysis for the engine block, the

156
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directional reduced integration method with hourglass control provides fairly good agreement 

with the experimental data obtained from modal testing. Furthermore, dynamic characteristics 

of the cylinder block are discussed based on the computational results. A significant time 

saving may be realized by using the simplest element to generate a finite element model. 

However, in finite element approximation, there is still some unacceptable error. The error 

may be developed either during the finite element formulation in the space or during the 

numerical integration process when a direct time integration is used to solve dynamic 

problems.

In chapter 4, an adaptive finite element method is introduced to reduce finite element 

approximation error in the space. Since a large structure like engine block was solved, a 

practical consideration for the adaptive method is employed in order to enhance the capability 

of the adaptive method in a design analysis process of large structure. An additional 

investigation was made on the mesh refinement process, especially the h-method, in 

conjunction with an space index mesh generation.

In chapter 5, to minimize error due to time integration, a variable time stepping 

algorithm is introduced based on local truncation error control. In order to improve the 

accuracy and to reduce the possibility of instability that might occur during the time step 

changing process, the definition of truncation error measure was modified. Also, the current 

frequency, which is derived from the Rayleigh Quotient, is introduced in evaluating the 

evolution matrix for computing error for multi-degree-of-freedom systems. Employment of 

the current frequency provides very accurate measure of the truncation error and saves the 

computation time required for evaluating error at each time step.

In chapter 6 , the experimental modal testing for the correlation study is presented. In 

the experiment, the lowest five modes have been obtained in the frequency region of 0Hz to 

1000Hz. These modes consist o f the fundamental three modes and two rigid body modes.
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The natural frequencies and modal damping were obtained by means of curve fitting for both 

the search peak and the complex exponential methods, and the mode shapes were obtained by 

means of the circle fitting method. It was found that there are two rigid body motions which 

meet at 63 Hz, rotation about the z-axis and 159Hz, rotation about the y-axis. The observed 

frequencies of rigid body motion from modal testing might be influenced by Coulomb friction 

introduced by the support configurations. Since the frequencies o f the rigid body motions 

should be much lower than these frequencies, future experiments on the cylinder block 

should be designed to eliminate or reduce these rigid body motions.

The current study of engine block structural analysis should be extended to running 

engine conditions. A future study should include stress analysis. Also, since the engine will 

be analyzed under an environment of the integrated computer aided engineering techniques 

which have been described in chapter 4 and 5, the objectives for our study as stated in the 

introduction may be achieved.

In the adaptive finite element method, which was briefly described in chapter 4, 

several techniques should be further developed for analyzing very large three dimensional 

structures. As studied before, especially in the h-adaptive method, there were some 

difficulties for generating adaptive grids for 3 dimensional general structures. Also, it is 

recommended that some algorithm such as QUADTREE and OCTREE, which are the 

hierarchical data structures, can be used for generating meshes more effectively in 

conjunction with the space index node and element coordinates which were introduced in 

chapter 4.

A local stability problem arises when the variable time stepping algorithm is used. 

Such a stability problem should be improved through a stabilization process. There has been 

no firmly established algorithm available, however further investigation on the stabilization 

process is desired to minimize the possibilities of instability.
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APPENDIX 1

REMARKS ON NEWMARK-p METHOD

A l.l  Differential Equation Form of Newmark-ft Method

The mathematical theory of ordinary differential equation is with the first order 

system of ordinary differential equations:

y = f ( t , y ) .  (A i . i )

The initial-value problem consists of finding a y which satisfies Eq.(A l.l) subject

to

y(0)=yo, (A1.2)

where yo is the given initial data.

Eq. (5.1) can be written in first-order form by employing the following definition:

, . { ! } .  ( M „

and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

161

f(t,y) =
u

_ M ' 1 ( F (t) - C u - K u ) ,
(A 1.4)

The Newmark-P method can be written in terms of following equations:

,n+l - f(tn+l> yn+l)» 

At2u n+l=un + At z" + - j - K  1 - 2P )z"+ 2p z"+l ],

un+1= un + At [(1 - y )zn + y zn+1] .

(A1.5.a)

(A1.5.b)

(A1.5.C)

where zn+1={ zn+1, zn+1 }T. Also, we have the complementary relationship about z as 

following:

z n+l= z n + At[( 1 -Y)zn + Yzn+1] . (A1.5.d)

Here, {yn+1} and {zn+1} are the approximation of {y(tn+i)} and {yfrn+l)}- Thus, from 

Eq.(A1.5.a) to Eq.(A1.5.d), we obtain following equation:

f u n + 1  l _ f  u" } 
I un+l J I un J

A t A t 2 '

.  0 At (1-y) . ( 3

A t A t 2 „ .
—  ~ ir< 2 W  

0 At y

zn+ri 

zn+1] ’

(A1.6.a)

or

yn+1 = yn + At ( Ca zn + CbZn+!) (A1.6.b)

where

yn+ At O n ,

O n = ( Ca zn + Cb zn+ l ) ,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

162

1 A t  .
Ca= 2 ^"<Y-2P)

L 0 (l-Y) J

and

T  T ^ 2P‘Y)
1 A t

Cb=
0  y

Assume f(t,y) is a continuous function o f t on the interval [0,a],oc >0, and that 

there exists a constant L such that

for all t e  [ 0, a  ] and all yi and y2 . Under these hypothesis, a unique solution of the 

initial-value problem is known to exist for all 0  < t < a  , and the mapping of yQ to y(t) is 

continuous. Furthermore, if f  is a k  - times differentiable function of its arguments, then 

y(t) will be ( k  + 1 ) - times continuous differentiable.

Let us now consider general one-step methods of form :

yo = y (0 ),

Suppose that to be continuous in t and y, and it is not mentioned about f(t,y) 

and At in <&, explicitly. For the general procedure we assume that

for all a < x < b, all 0 <; At <, ho, any continuous function satisfying a Lipschitz condition 

and, for all u, and v.

Here, we suppose that
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yn+1 = yn + At O  ( tn, yn)+At Tn 

with xn "small".

With ui=u and U2 =u, Eq. (A1.4) is transformed into the system

uil J  u 2

u2J 1 (F (t) - u 2  - C0 2 u i)

with initial conditions.

Clearly, fi(t,u  1 ,112) = U2  satisfies the Lipschitz condition with L i=  

f2 (t,ui,U2 ) = M -^Fft) -Cu2  - Kui), we have

I f2 (t,Ul,U2) -f2 (t,ui,u2) I £ !M-l(F(t) -CU2  - Kui)-M-l(F(t) -Cu2  - Kui)l

<L2 lH2  - U2I + L2  lui - uil, 

where L2  = max( 12£co I , I co2 1), and ui = ui(tn). Meanwhile, we can define as: 

fjn+l—fj(tn+h, u in+At f in, U2n+At f2 n), 

f2 n+l=f2 (tn+h, u in+At f in, U2n+At f2 n).

Now, we can write

| ^ n +1 -fjn+li = | U2n+1 .j^n+l |

< Li Iu2-U2 |l + LiAt I f2 -f2l

^  L i  I112-H2I +  L l A t  (  L2IU 2 -  H2l +  L 2  lu i  -  M il )

<  L i L 2 h  lu i~ u .il +  L i ( l + L 2 A t )  Iu2  -  m l »

(A 1.9)

(A1.10)

1. With

(A l.ll)
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I f2n+1 -f2n+1l = l(F(tn+i) -2̂ COU2n+1 - (o2Uin+l)-(F(tn+i) -2 t̂OU2 - «2uin+1)l

^  L2  ( IU2-H2 I + At I h ' h  I + lui-ml + At I fi-fi I )

^  L2  ( I112-U2 I + At ( L2 IU2  - H2 l + L2  lui - ail ))

+ L2  (lui-aii +At L iiu 2 - a 2 0

<, L2  ( 1 +L2 At ) lui-ail + L2  (1+LiAt + L2A t) Iu2  - a 2 > •

<5 n can be rewritten in following form:

O "  = Ca zn + Cb zn+1

= Ca zn + Cb z(tn+ A t, yn+At zn) . (A1 .1 2 )

Let yn=y(tn), zn=z(tn), and <£n = 0(tn), then we can write

On - On = C a(zn -Zn)

+ Cb{ z( tn+ A t, yn+At zn)) - z( tn+A t, yn+At £n ) } . (A1.13)

The continuity of O obviously follows from the continuity of f. Since

(O - O )j = Can  ( f2n -fin) + Cai2  ( f2n -fcn)

+ Cbii ( f ln+1  -fln+1) + Cbi2  ( f2n+1  -f2n+1) , (A1.14.a)

(O - O ) 2  = Ca2 l ( f ln -fln) + Ca2 2  ( h n -h n)

+ Cb 21 ( f ln+1 -fln+1) + Cb2 2  ( f2 n+1 -&n+1) • (A1.14.b)
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Thus, we have

ll ^  { ICalll Li+ICai2 l L2  +ICbiil LiL2h + ICbi2 l 1-2(1+ L2h) } lui - All 

+ { I Cai2 l 1-2 + 'Cblll L i(l+L2h)+ ICbi2 l L2 (l+Lih+ L2h )} Iu2  - H2 I ,

and

WE> - <$ I2  ^  { ICa2 ll Li+ICp9?l L2+ ICb2 ll L2Lih + I Q>22 l L2 (l+L2h ) } lui - uil 

+ { I Q?.?J L2  + ICb2 ll L l(l+  L2W+ ICb2 2 l L2 (l+Lih+L2h)} Iu2  - H2 I •

If there is no damping, Eq.(A1.14) become

ld> - 0  ll ^  ICalll L l Iu2  - U2 l +ICbiil (Li Iu2  - m l +LiL2h lui - m l ), (A1.15.a)

IO - <I> I2  ^  ICaT>l L2  lui - m l +ICb22l (L2  lui - ml +LiL2h Iu2  - U2 I )• (A1.15.b)

From the Eq.(A1.15), we can define Lipschitz constant L  for the error equation of 

Newmark-p method described in Eq.(A1.5) as follows:

L = [  L 2 I L 2 2  ]  • <A1-16)

where

L n  = ICalll Li-4-I Cai2 l L2 +ICbiil LiL2At + ICbi2 l L2(l+  L2A t) , 

L 12 = I Cai2 l L2+ ICbiil L i(l+L2A t)+ ICbl2 l L2 (l+LiAt +L2At ) , 

L21 = ICa2 ll Li+ICa9.9.l L2+ ICb2 ll L2LiAt + I Cb2 2 l L2 (l+L2At ) ,

L22  = I Ca2 2 l L2  + ICb2 ll L i(l+  L2A t)+ ICb2 2 l L2 (l+Li+L2A t) .
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w hile, for the undamped case, L  is expressed as follows: 

Lil = ICbiilLiL2At 

L l2 = ICaiil L j+ ICbiil Li 

L21 = ICa9.9.l L2+I Cb9?J L2 

L22 = ICb22lLiL2At .

For the undamped linear case, the matrix L is expressed as following form:

1
L =

r ^ 0)2At

CD"
1^co2  At

(A1.17)

A1.2 Evaluation of Truncation Error using Tavlor's Series

The truncation error can be expressed using Taylor's series. It was first shown in 

Hilber[57]. Even though the truncation error expression for the direct time integration for 

Newmark family was derived only for the homogeneous case, it is extended to the forced 

response case in present expression.

Assuming u(t) to be continuously differentiable up to any required order, all terms 

in Eq.(5.28) can be expanded into finite Taylor series at t. Also, in Eq.(5.28), it is 

assumed that time step size is not changed from (n)th step to (n+l)th step so that [An] = 

[A11-1]. Then, Ai = A id = A iv, A2  = A2d = A2V. Using the differential equation of motion, 

the first three terms can be expressed:
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m
un+l .  A iun + A2un_1 = ^  T/(At )I‘2 uO')(t)

i= 0

= T0 (At)'2u +Ti(At)_1u +T2u +T3 (At)u(3) +T4 (At)2 u(4)

+ 0(At3)

= [Q-2T0-T2  +Q2T4 ]cd2u + [Q -iT i-m ycou 

+ [ T2F + T3(—)F + T4  (—)2(F-co2 F)
00 CD

+ 0(At3) (A1.18)

where To = 1 - A i + A2  , Ti = (1+  ( -1)*A2 ) /  / !  , and the circular sampling frequency 

Q = co A t. Also, u and F denote un and F", respectively.

Using derivatives of force terms with respect to time: 

pn+l_pn-l
F„ =  

Fn =

2At

p n + l_ 2 F n+ F n- l

At2

we will get following expression.

un+1 - A iun + A2un_1= [Q-2T0 -T2  + Q 2T 4]co2u  +  [Q^Ti-QT^ooii 

+ [ T2 -T4 Q2-2T4] F° + [ T3 -0.5T4]P»+1 

+ [ T4 -0.5T3]F"-1 + 0(At3). (A 1.19)

Similarly, the last three terms of Eq.(5.42) can be expanded using Taylor's series
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m
E iPi+ l + E2F" + E3F11"1 = ]T Q,(At )**-2p(0(t), (A1.20)

i= 0

where Qo = E i+ E2+ E3 and Qi = ( B i + ( - 1 )  * B3 ) / / ! .

Combining Eq. (A1.19) and (A1.20), we have a truncation error equation for the 

displacement as follow:

Td = [Q-2T0 -T2  +Q 2t4 ]o)2u + [Q-lTi-QT3]C0u

+ [ (T2 -n2T4)F + T3(“ )F + T4  (-)2 F  ]
CD CO

+ [ Q o(-)-!F + Qi(—)F + Q2  (—)2F ] + 0(At 3). (A1.21)
CO CO CO

Also, we can have a truncation error equation for the velocity in similar way as follows:

TV = [-Ti +Q2t3]co2u + [Q-lT0 -QT2]cou

+ [T iF  + T2( - )F  + T 3 ( - ) 2 F ]
CO CO

+ [ Ro(—)_1F + R i(- )F  + R2  ( -)2F  ] + 0(At 3) , (A1.22)
CO CO CO

where Rq = B4  + B 5 + B6  and Ri = ( B4  + (-1)* B6 ).
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APPENDIX 2 

GLOSSARY OF MODAL TESTING

A 2.I Basic P roperties for M odal Testing 

A2.2.1 Auto-Correlation

The term auto-correlation is often defined as follow:

1 T
Rxx( X ) = E{x(t)x(t+x)} = lim S* f x (t)x (t+ t)d t. (A2.1)

J 0

A cross-correlation function, describing joint properties between two signals x(t) 

and y(t) is given by

1 T
Rxy( X) = E{x(t)y(t+x)} = lim s? f x (t)y (t+ t)d t. (A2.2)

0

A2.1.2 Power Spectral Density Function

For continuous signals it is possible to use the power spectral function. For the 

case o f random signal this is the established technique, as the existence of Fourier 

transform for these is problematical. The function of frequency gives the distribution of the
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power of the signal with frequency. Denoting it by Sxx(f), we have

OO
x 2 ( t ) =  J S * x (  f ) df  . (A2.3)

-  OO

The power spectral density and auto correlation function are related for stationary 

signals as following:

OO

S x x ( f ) =  J  RxxOc) exp(-j 2rcfx)dx , (A2.4)
-  OO

and

OO

SXy ( f ) =  J  Rxy(x) exp(-j 27tfx)dx . (A2 .5 )
-  OO

A2.1.3 Transfer Function

In the case of two associated time histories x(t) and y(t), following relationship can 

be generalized in linear system:

OO
y(t) = J h(t - f) x(t’) dt' + n(t) , (A2 .6 )

- OO

where h(t) is the impulse response function and n(t) is the residuals to compensate some 

error, introduced during the measuring process.

From Eq. (A2.6), if  zero residual is assumed, the transfer function may be written 

using the power spectral density function as follow:

H( f ) = S Xy /  S y y  . (A2.7)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

A2.1.4 Coherence

Coherence is an indicator o f measurement quality. To quantify that part of y

designated as residual, we define the coherence function ̂ (f). This function can be defined

as the ratio as following:

v2 r f \  -  coherent output power _  Syy- S nn 
^ ”  total output power

I H I2  S xx
 (A2.8)

where the coherent power is the one due to the part of y that is linearly related to x. Also, 

we have the triangular inequality

0 < y 2 (f)< 1. (A2.9)

Therefore, if all measured data are of good quality, the coherence should be unity. 

This is the condition used in our analysis to confirm that the measurements have been made 

well. As shown by Fig. A2.4b which corresponds to Fig A2.4a, the coherence plot shows 

nearly unity except in the the vicinity of the resonances. Theoretically it is expected that a 

rapid decrease takes place at resonance. The low coherence sometimes comes from noise. 

Measurements with low coherence should not be accepted in any case. Fig. A2.4b is an 

example of an acceptable measurement.

A2.2.1 Excitation

Excitation of the structure provides a measurable input of mechanical force energy, 

in which excitation sets the structure into vibratory motion. Excitation may be provided by 

an electric dynamic vibration exacter or an input hammer. These tests were performed
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using an impact hammer.

There are two primary impact tips which can be mounted in the end of the hammer 

head, such as soft tip(rubber or plastic) and hard tip(steel). By performing various 

calibration tests, it was found that the plastic tip gave a best frequency response function in 

the frequency interval o f interests (e.g., frequency ranges 0-1000 Hz). The force 

transducer is mounted between the impact tip and the hammer head to register the impact 

force historically. Fig.A2.1 shows the time domain response of the excitation force on 

channel 2, and the acceleration on channel 3.

The response o f the testpiece can be measured by either a strain gage or 

piezoelectric accelerometer. The accelerometer has been used throughout the experiment. It 

turned out that an intensive impact does not produce a better response measure, in fact the 

opposite is the case. Caution should be paid not to have a bounce when using the impact 

hammer. Usually, any bounce can be detected by observing the time domain of the 

excitation as shown in Fig. A2.1.

The computer aided test system, GR2515, is programmed to store the exciter and 

the response signals and to produce the frequency response function, or transfer function, 

which contains the real, imaginary, amplitude, and phase information in each increment of 

frequency. This system yields the Bode diagram both in real-frequency domain, and in 

imaginary-frequency domain, and the Nyquist plot on real and imaginary coordinates( See 

Fig. A2.2, A2.3 and A2.4). As is well known, a phase change of 180° occurs at 

resonance.

A2.2.2 Averaging of Measurement

Practically, it is essential to perform averaging of measurements in the testing. The
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idea behind this is that any one measurement is likely to be contaminated by noise, 

especially in the frequency regions away from resonance where the response levels are 

likely to be quite low. In this experiment, a 10 times average was carried out. This 

produced relatively smooth frequency response functions than the ones obtained through 

one-time measurement as shown in Fig. 6.1b.

A2JLT.ransfe.C-Fnn.ct.i9n 

A2.3.1 Curve Fitting

As shown in Fig. A2.5, the solid line shows the actual measured curve and the plus 

s ig n '++' shows the analytical curve which was derived from the extracted parameters by 

using the search peak or the complex exponential method. Using the curve fitting method, 

it is determined that the extracted parameters are well-fitted to the actual measured curve 

obtained from testing. If the analytical curve is not fitted well, the process should be 

repeated until the sufficient well-fitted curve is obtained by trial and error. If  the analytical 

curve is well fitted, then modal parameters for the analytical curve may be considered to be 

acceptable as shown in Fig. A2.5. The result is quite dependent upon the user's ability and 

experience.

A2.3.2 Consideration of Residuals

The residuals also play important role in the curve fitting. Since the analytical curve 

basically does not include effects outside frequency region of interests, one might obtain an 

incorrect result when curve fitting. Therefore, it is necessary to compensate the analytical 

curve by predicting and including outside effects in the low frequencies region and at 

higher frequencies using some appropriate methods. In this experiment, the residuals were 

added to obtain sufficiently correct curve in the curve fitting process. Then, well fitted
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curve could be obtained as shown in Fig. A2.6a and Fig. A2.6b.

Finally, the generated analytical curve must be well-fitted with the actual measured 

curve (FRF), otherwise the process should be repeated with a different set of parameters. 

Through these process, the resonance frequencies and the modal dampings were obtained.

A2.3.3 Alternative Forms of Frequency Response Function

There are many different forms of the basic FRF concepts, depending on the actual 

parameters chosen for the input and the output. In addition to the receptance form, which 

relates displacement response to force excitation, following two alternatives are widely 

used:

mobility, Y(<m), which is velocity and

acceleration or inertance), In(co), which is acceleration/force.

Because of the sinusoidal nature of all of the parameters are used, there is a simple 

relationship between these three different quantities, and the advantage of using one rather 

than the others are generally based on convenience or availability. These relationships are:

Y(co) = icoa(to)

and

In(£o) = icoY(co) = -o^aCco) (A2.9)
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Fig. A2.1 Time Domain for Excitation on Channel 2 and Acceleration on Channel 3
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Fig. A2.2 Real vs Frquency Plot for the Point Inertance (2X+ 2X+)
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Fig. A2.4 Imaginary vs Real Plot(Nyquist Plot) with Circle Representing Resonances
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Fig. A2.5 FRF Plot (Bode plot) Measured at the Point Inertance (2X+ 2X+)
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Fig. A2.6 Coherence Spectrum far the FRF Shown in Fig. A2.5, 
Showing Almost Unity Except in the Vicinity of Each Resonance
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Fig. A2.7 Curve Fitting Using the Search Peak Method
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Fig. A2.8 Curve Fitting Using Complex Exponential Method Before Adding the
Residuals
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Fig. A2.9 Curve Fitting using Complex Exponential Method with Residuals.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

BIBLIOGRAPHY

180

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

181

BIBLIOGRAGHY

1. M. J. Percy, "Vibration Analysis o f the NH-250 Valve Cover and Comparison with 
Its Noise Spectrum", Columbus, Indiana, Cumins Engine Company Inc., 1972.

2. R.S. Lane, S. E. Timour, and G. W. Hawkins, "Analysis Applied to Diesel Engine 
Noise Reduction", Paper No. 750835 Presented at SAE Conference, Milwaukee, 
Wisconsin, Sept., 1975.

3. Dean M. Ford, Paul A. Hayes, and Stephen K. Smith, "Engine Noise Reduction 
by Structural Design Using Advanced Experimental and Finite Element Methods', 
Paper No. 790366 Presented at SAE Conference, Detroit, Michigan, Feb. 1979.

4. M. E. Moncelle, "Diesel Engine Sound Reduction by Dynamic Modelling", SAE 
Paper No. 800409 Presented at SAE Conference, Detroit, Michigan, Feb. 1980.

5. I. Nagamaya, Y. Araki, K. Kakuta and Y. Usuba, "Engine Noise Reduction by 
Structural Study of Cylinder Block", Paper 800441 Presented at SAE Conference, 
Detroit, Michigan, Feb. 1980.

6 . D. M. Croker, N. Lalor and M. Petyt, "The Use of Finite Element Techniques for 
the Prediction of Engine Noise", Paper C146/79 Presented at the Institute of 
Mechanical Engineers Conference, London, England, July 1979.

7. R. J. Dejong and N. E. Parsons, "High Frequency Vibration Transmission through 
the Moving Parts o f an Engine", Paper No. 800405 Presented at SAE 
Conference, Detroit, Michigan, Feb. 1980.

8 . P. A. Hayes, "Experimental and Analytical Investigation of Diesel Engine Piston 
Impact Noise", Master's Thesis, Purdue University, West Lafayette, Indiana, Dec. 
1977.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

182

9. N. Lalor, "Computer Optimized Design of Engine Structures for Low Noise 
Engine", SAE Paper 790364, SAE Congress, Detroit, Jan. 1979.

10. R. J. Tyrrell and D. M. Croker, "Engine Noise: Practicalities and Prediction, Part 2 
- Finite Element Analysis", SAE Paper 870978, Noise and Vibration Conference, 
Traverse City, Michigan, 1987.

11. T. Priede, "Some Studies into Origins of Automotive Diesel Engine Noise and Its 
Control", FISITA Paper C12, Munchen, 1966.

12. T. Priede, E. C. Grover, and N. Laylor, "Relation between Noise and Basic 
Structural Vibration between Noise and Vibration of Diesel Engines", SAE Paper 
690450, University of Southhampton, England, SAE Conference, Chicago, May 
1969.

13. M. F. Russell, "Automotive Diesel Engine Noise and Its Control", SAE Paper 
730243 at SAE Congress, Detroit, Jan. 1973.

14. M. F. Russell, "Reduction of Noise from Diesel Engine Surfaces", SAE Paper 
720135, Detroit, Michigan, 1972.

15. M. F. Russell, "Diesel Engine Noise: Control at Source", SAE Paper 820238, SAE 
Conference, Detroit, March 1982.

16. Haddad, S.D., "Mechanical Induced Noise and Vibration in the Automotive Diesel 
Engine", ASME Paper 77-DET-37, Chicago, 26-30, Sept. 1977.

17. Haddad, S. D., "A Diesel Engine with Lower Mechanical Noise", Inst, o f Acoustic 
Meeting, Cambridge University, 5-7 Apr. 1978.

18. Haddad, S. D., "Analysis of Piston Slap-Induced Noise and Assessment of some 
methods of Control in Diesel Engines", SAE Presentation 790275, Detroit, Feb. 
1979.

19. Haddad, S. D. and Fortescue, P., "Simulating Piston Slap by an Analogue 
Computer", J. of Sound and Vibration, Vol 52,791-793,1977.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

183

20. Koh, B. C. and Kikuchi, N., "New Improved Hourglass Control for Bilinear and 
Trilinear Elements in Anisotropic Linearly Elasticity", Computer Methods in 
Applied Mechanics and Engineering,1988.

21. Maenchen, G. and Sack, S., "The Tensor Code", Methods in Computational 
Physics, Vol. 13, Ed. Alder, B., Fembach, S. and Rotenberg, M., Academic 
Press, 1964.

22. Belytschko, T., Ong, J. S., Liu, W. K. and Kennedy, J. M . , ' Hourglass Control 
in Linear and Nonlinear Problems," Comp. Meth. Appl. Mech. Engin.,Vol. 43, 
pp. 251-276, North Holland, 1984.

23. Hallquist, J. O., "DYNA3D," Lawrence Livermore National Laboratories, 
Livermore, Ca, 1979.

24. Hallquist, J. O., "NIKE3D," Lawrence Livermore National Laboratories, 
Livermore, Ca.,1981.

25. Hallquist, J. O., "INGRID User's Manual," Lawrence Livermore National 
Laboratories, Livermore, Ca., 1983.

26. Hallquist, J. O., "TAURUS User's Manual," Lawrence Livermore National 
Laboratories, Livermore, Ca., 1983.

27. Hughes, T.J.R., and Liu, W.K., "Nonlinear Finite Element Analysis of Shells: 
Part I, Three-Dimensional Shells", Computer Methods in Applied Mechanics and 
Engineering", vol. 26(1981), pp331-362.

28. Belytschko, T., and Lin, J.I., "Explicit Algorithm for the Nonlinear Dynamics of 
Shells", Compter Methods In Applied Mechanics and Engineering", vol.42(1984), 
pp225-251.

29. E. R. A. Oliveira," Optimization of Finite Element Solution,' in Precedings Third 
Conference of Matrix Methods in Structural Mechanics, Wright-Patterson Airforce 
Base, Dayton, OH, 1971.

30. Caroll, W.E. and Barker, R.M., "A Theorem For Finite Element Idealization", 
International Journal of Solid and Structures, 9,1973.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

184

31. Turcke, D J . and McNeice, G.M., "Guide for Selecting Finite Elements Grid 
Based on Optimization Study", Computer and Structures, 4,499-519,1974.

32. Swell, G., "An Adaptive Computer Program for the Solution Div(P(x,y)Grad 
U)=F(x,y,U) on a Polygonal Region", in the Mathematics of Finite Elements and 
Applications, n, MAFELAB, Academic Press, New York, 1975.

33. Prager, W., "A Note on the Optimal Choice o f Finite Element Grids, Computer 
Methods in Applied Mechanics and Engineering, 6,363-366,1975.

34. Melosh, R J . and Marcal, P.V., "An Energy Basis for Mesh Refinements of 
Structural Continua", International J. for Numerical Methods in Engineering, 11, 
1083-1091, 1977.

35. Babuska, I, and Rheinbolt, W. C., "Error Estimates for Adaptive Finite Element 
Computations, SIAM J. Numer. Anal. 15 (1978) 1736-754.

36. Winslow, A. M. Adaptive Mesh Rezonning by the Equipotential Method, UCID- 
19062, Lawrence Livermore Laboratory, 1981

37. Amey, David C. and Flaherty, Joseph E., "A Two Dimensional Mesh Moving 
Technique for Time-Dependent Partial Differential Equations", J. of Comp. Physics
67,124-144(1986).

38. Diaz, A.R., Kikuchi, N. and Taylor, J.E., "A Method of Grid Optimization for 
Finite Element Methods", Computer Methods in Applied Mechanics and 
Engineering, 37,29-46,1983.

39. Kikuchi, N. "Finite Element Methods in Mechanics," Cambridge Press, 1985.

40. N. Kikuchi, "Adaptive Grid Design Methods for Finite Element Analysis", 
Computational Methods in Applied Mechanics and Engineering, Vol 55, pp 129- 
160,1986

41. N. Kikuchi, K. Y. Chung, T. Torigaki, and J. E. Taylor,"Adaptive Finite Element 
Methods for Shape Optimization of Linearly Elastic Structures", Computer Methods 
in Applied Mechanics and Engineering,Vol. 57,pp 67-89,North-Holland, 1986.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

185

42. Kikuchi, N. and Torigaki, T., "Elastic Plastic Impact/Contact Problem by Adaptive 
Finite Element Method, ASME, Submitted, 1987.

43. Carnahan, B. and et al,"Applied Numerical Methods", Wiley, 1969.

44. Beckers, P., " CAD Technology in Optimal Design", Computer Aided Optimal
Design , Vol 27., Computer and System Sciences, Series F, Springer Verlag, 
1987.

45. W ellen,H .,and Bartholomew, P., "Structural Optim ization in Aircraft 
Construction",Computer Aided Optimal Design , Vol 27., Computer and System 
Sciences, Series F, Springer Verlag, 1987.

46. T.J.R. Hughes and T. Belytschko, "A Precis o f Development in Computational
Methods for Transient Analysis", ASME J. Appl. Mech. 50(1983) 1033-1041.

47. K.J. Bathe, Finite Element Procedure in Engineering Analysis ( Prentice-Hall, 
Englewood Cliffs, N.J., 1982).

48. K. C. Park and P.G. Underwood, "A Variable Central Difference Method for 
Structural Dynamic Analysis- Part 1. Theoretical Aspects", Computational Meths. 
Appl. Mech. Eng. 22(1980) 241-258.

49. P.G. Underwood and K. C. Park , "A Variable Central Difference Method for 
Structural Dynamic Analysis- Part 2. Implementation and Performance Evaluation", 
Computational Meths. Appl. Mech. Eng. 22(1980) 259-279.

50. G. L. Goudreau and R. L. Taylor, "Evaluation of Numerical Integration Methods 
in Elasto-dynamics", Comp. Meths. Mech. Eng. 2(1973) 69-97.

51. H. M. Hilber, T.J.R. Hughes and P.L. Taylor, "Improved Numerical Dissipation 
for Time Integration Algorithms in Structural Dynamics", Earthquake Eng. 
Structural Dynamics 5(1977)

52. H.D. Hibbit and B.I. Karlson, "Analysis of Pipe Whip", ASME Pressure Vessel 
and Pipe Conference, San Francisco, CA, June 25-29, 1979.

53. L.F. Shampine, "Local Error Control in Codes for Ordinary Differential 
Equations", Appl. Math. Comp. 3(1977).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

186

54. C.A. Felippa and K.C. Park, "Direct Time Integration Methods in Non-linear 
Structural Mechanics", Comp. Meths. Appl. Mech. Eng. 17/18(1979) 277-313.

55. P.G. Bergan and E. Mollestad, "An Automatic Time-stepping Algorithm for 
Dynamic Problems", Comp. Meths. Appl. Mech. Eng. 49(1985) 299-318.

56. T.J.R. Hughes, "Stability, Convergence and Growth and Decay of Energy of the 
Average Acceleration Method in Non-linear Structural Dynamics", Computers and 
Structures Vol 6 , pp. 313-324(1976).

57. H.M. Hilber and T.J.R. Hughes, "Collocation, Dissipation and 'Overshoot' for 
Time Integration Schemes in Structural Dynamics", Earthquake Engineering and 
Structural Dynamics Vol. 6,99-117(1978).

58. T. Belytschko and T.J.R. Hughes, eds, Computational Methods for Transient 
Analysis, Vol 1, North-Holland 1983.

59. K.C. Park, "Practical Aspects of Numerical Time Integration", Computers and 
Structures, vol. 7, pp. 343-353, Pergamon Press, 1977.

60. N.M. Newmark, "A Method of Computation for Structural Dynamics", J. Engng 
Mech. div. ASCE 85(EM3), 67-94, July 1959.

61. Krieg, R.D., and Key, S.W., "Transient Shell Response by Numerical Time 
Integration", in Advances in Computational Methods in Structural Mechanics and 
Design, eds J.C. Oden et a i,  The Univ. of Alabama Press, Huntsville, pp. 237- 
257, 1972.

62. Krogh, F.T., "Algorithm for Changing the Step Size by a Multistep Method", 
Tech. Memo 275, Jet Propulsion Lab., California Institute of Technology, 1971.

63. Brayton, K.R., Gustavson, F.G., and Hachtel, G. D., "A New Efficient 
Algorithm for Solving Differential-algebraic System Using Implicit Backward 
Difference Formula", IEEE Proceedings, 60, pp. 98-108, 1972.

64. Zadunaisky, P.E., "On the Estimation of Error Propagated in the Numerical 
Integration of Ordinary Differential Equation", Numerical Methods, Vol. 27, pp. 
21-39, 1976.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

187

65. Wilkinson, J.H., "The Algebraic Eigenvalue Problem", Clarendon Press, Oxford, 
1965, pp. 99-101.

6 6 . Bathe, K.J., and Wilson, E. L., "Stability and Accuracy Analysis of Direct 
Integration Methods", Int. j. Earthquake Engineering and Structural Dynamics, 
vol.l, pp. 283-291, 1973.

67. Gear, C.W., and Tu, K.W., "The Effects of Variable Time Step Size on the 
Stability of Multistep Methods", SIAM j. Numerical Analysis, vol. 11, pp. 1025- 
1043, 1974.

6 8 . Key, S.W., "Transient Response by Time Integration: Review of Implicit and 
Explicit Operators", In J. Donea(ed.), Advanced Structural Dynamics, Applied 
Science, London, 1978.

69. Hughes, T.J.R., "Analysis of Transient Algorithm with Particular Reference to 
Stability Behavior", in T. Belyschko and T.J.R. Hughes(eds.), Computational 
Methods for Transient Analysis, North-Holland, Amsterdam, 1983, pp. 67-155.

70. Hibbit, H.D., and Karlsonn, B.I., "Analysis of Pipe Whip", Paper 79-PVP-122, 
ASME, New York,1979.

71. R.E. N ickel," Direct Integration Methods in Structural Dynamics", J. Eng. Mech. 
Div., ASCE, vol. 99, EM2, pp. 303-317, 1973.

72. K.C. Park, "Evaluating Time Integration Methods for Nonlinear Dynamic 
Analysis", in 'Finite Element Analysis o f Transient Nonlinear Structural. 
Behavior", ASME, New York, 1978.

73. J.F. McNamara, "Solution Scheme for Problems of Nonlinear Structural 
Dynamics", Paper 74-PVP-30, ASME, 1974.

73. R.W.H. Wu and E.A. Witmer, "Nonlinear Transient Response of Structures by the 
Spatial Finite Element Method", AIAA Journal, Vol. 11, no 8 , pp 1110-1117, 
1973.

74. J.A. Stricklin, J.E. Martinez, J.R. Tillerson, J.H. Hong and W.E. Haisler, 
"Nonlinear Dynamic Analysis of Shells of Revolution by the Matrix Displacement 
Method", AIAA Journal, vol.9, No.4, pp. 629-636, 1971.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

188

75. G.M. Hulbert and T.J.R. Hughes, "An Error Analysis of Truncated Starting 
Conditions in Step-by-step Time Integration: Consequencies for Structural 
Dynamics", Earthquake Engineering and Structural Dynamics, vol. 15, pp 901- 
910, 1987.

76. O.C. Zienkiewicz, W.L. Wood and R.L. Taylor, "An Alternative Single-step 
Algorithm for Dynamic Problems", Earthquake Engineering and Structural 
Dynamics, vol. 8 , pp 31-40, 1980.

77. T. Belytschko, P. Smolinski, and W.K. Liu, "Stability of Multi-time Step 
Partitioned Integrator for First-order Finite Element Systems", Computer Methods 
in Applied Mechanics and Engineering, North-Holland, 49, pp 281-297,1985.

78. R.W. Clough and J. Penzien, "Dynamics of Structures", McGraw-Hill, New 
York,1975.

79. I. Babuska, J. Chandra and J. E. Flaherty, eds., Adaptive Computational Method 
for Partial Differential Method, SIAM, Philadelphia, 1983.

80. Amey, David C. and Flaherty, Joseph E., "A Two Dimensional Mesh Moving 
Technique for Time-dependent Partial Differential Equations", J. of Comp. Physics
67,124-144(1986).

81. Adjerid, S. and Flahtery, J.,"A Moving-Mesh Finite Element Method with Local 
Refinement for Parabolic Partial Differential Equations", Comp Methods in Applied 
Method and Engineering 55, North Holland (1986).

82. Zienkiewicz, O.C. et al., "Hierarchical Finite Element Approaches, Adaptive 
Refinement and Error Estimates", The mathematics Finite Element Application, ed. 
J.R. Whitemean, Academic Press, New York, 1982.

83. E. Rank, and I. Babuska, "An Expert System for the Optimal Mesh Design in the 
Hp-Version of the Finite Element Method", International J. Numerical Methods in 
Engineering, vol. 24,2087-2106,1987.

84. P. Devloo, J.T. Oden and T. Strouboulis, "Implementation o f an Adaptive 
Refinement Technique for the SUPG Algorithm", Computer Methods in Applied 
Mechanics and Engineering, vol. 61, pp339-358,1987.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

189

85. B.N. Jiang and G.F. Carey, "Adaptive Refinement for Least-square Finite 
Elements with Element-by-element Conjugate Gradient Solution", Int. J. Numerical 
Methods in Engineering, vol 24,569-580,1987.

8 6 . I.D. Faux and M.J. Pratt, "Computaional Geometry for Design and Manufature", 
Ellis Worwood, 1979.

87. S. Braun, Mechanical Signature Analysis, Academic Press, 1986.

8 8 . Mark A. Lamontia, "On the Determination and Use of Residual Flexibilities", 1st 
International Modal Analysis Conference, Nov. 1982.

89. Jens Trampe Broch, "Mechanical Vibration and Shoch Measurements', Bruel & 
Kjer, 1984.

90. William T. Thomson, Theory of Vibration with Applications, Prentice-Hall.Inc, 
1981.

91. D.J. Ewins, Modal Testing Theory and Practice, RSP, England, 1986.

92. D.J. Ewins, "Why and Wherefores o f Modal Testing",SEE Journal, Sept. 1979.

93. SDRC, Users Manual for Modal Analysis 9.0,U.S.A.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


